214 research outputs found

    Electrodynamic trapping of spinless neutral atoms with an atom chip

    Full text link
    Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly 10210^2 strontium atoms in the 1S0^1S_0 state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.Comment: 4pages, 4figures, to appear in Phys. Rev. Let

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length Ο=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Thermodynamic properties of thin films of superfluid 3He-A

    Full text link
    The pairing correlations in superfluid He-3 are strongly modified by quasiparticle scattering off a surface or an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation spectrum and the free energy for thin films of superfluid He-3. Both specular and diffuse scattering by a substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at zero pressure. We obtain new results for the phase diagram, free energy, entropy and specific heat of thin films of superfluid He-3.Comment: Replaced with an updated versio

    Majorana edge modes of superfluid 3He A-phase in a slab

    Full text link
    Motivated by a recent experiment on the superfluid 3He A-phase with a chiral p-wave pairing confined in a thin slab, we propose designing a concrete experimental setup for observing the Majorana edge modes that appear around the circumference edge region. We solve the quasi-classical Eilenberger equation, which is quantitatively reliable, to evaluate several observables. To derive the property inherent to the Majorana edge state, the full quantum mechanical Bogoliubov-de Gennes equation is solved in this setting. On the basis of the results obtained, we perform decisive experiments to check the Majorana nature.Comment: 5 pages, 5 figure

    Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2

    Full text link
    We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl

    Quasiparticle Bound States and Low-Temperature Peaks of the Conductance of NIS Junctions in d-Wave Superconductors

    Full text link
    Quasiparticle states bound to the boundary of anisotropically paired superconductors, their contributions to the density of states and to the conductance of NIS junctions are studied both analytically and numerically. For smooth surfaces and real order parameter we find some general results for the bound state energies. In particular, we show that under fairly general conditions quasiparticle states with nonzero energies exist for momentum directions within a narrow region around the surface normal. The energy dispersion of the bound states always has an extremum for the direction along the normal. Along with the zero-bias anomaly due to midgap states, we find, for quasi two-dimensional materials, additional low-temperature peaks in the conductance of NIS junctions for voltages determined by the extrema of the bound state energies. The influence of interface roughness on the conductance is investigated within the framework of Ovchinnikov's model. We show that nonzero-bias peaks at low temperatures may give information on the order parameter in the bulk, even though it is suppressed at the surface.Comment: 14 pages, PostScrip

    Nonmagnetic impurity effects in MgB2_{2}

    Full text link
    We study nonmagnetic impurity effects in MgB2_{2} using the quasiclassical equations of superconductivity for a weak-coupling two-band model. Parameters in the model are fixed so as to reproduce experiments on MgB2_{2} as closely as possible. The quasiparticle density of states and the specific heat are calculated for various values of the interband impurity scattering. The density of states changes gradually from a two-gap structure into the conventional single-gap structure as the interband scattering increases. It is found that the excitation threshold is not a monotonic function of the interband scattering. Calculated results for the specific heat are in good agreements with experiments on samples after irradiation

    Electronic structure of d-wave superconducting quantum wires

    Full text link
    We present analytical and numerical results for the electronic spectra of wires of a d-wave superconductor on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd number of chains N at (110) orientation, spectra consist of N doubly degenerate branches. By contrast, for even N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajectories bounded by the surfaces of the wire. Our microscopic results for the local density of states display atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations or even stablilize exotic quasi-1D pair states with spin triplet character.Comment: 21 pages, 20 figures. Slightly modified version as published in PR

    Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors

    Full text link
    On the basis of the quasiclassical theory of superconductivity, we obtain a formula for the local density of states (LDOS) around a vortex core of superconductors with anisotropic pair-potential and Fermi surface in arbitrary directions of magnetic fields. Earlier results on the LDOS of d-wave superconductors and NbSe2_2 are naturally interpreted within our theory geometrically; the region with high intensity of the LDOS observed in numerical calculations turns out to the enveloping curve of the trajectory of Andreev bound states. We discuss experimental results on YNi2_2B2_2C within the quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure

    Disordered Josephson Junctions of d-Wave Superconductors

    Get PDF
    We study the Josephson effect between weakly coupled d-wave superconductors within the quasiclassical theory, in particular, the influence of interface roughness on the current-phase relation and the critical current of mirror junctions and 45∘45^\circ asymmetric junctions. For mirror junctions the temperature dependence of the critical current is non-monotonic in the limit of low roughness, but monotonic for very rough interfaces. For 45∘45^\circ asymmetric junctions with a linear dimension much larger than the superconducting coherence length we find a sin⁥(2ϕ)\sin(2\phi)-like current-phase relation, whereas for contacts on the scale of the coherence length or smaller the usual sinâĄÏ•\sin\phi-like behavior is observed. Our results compare well with recent experimental observations.Comment: 10 pages, 12 figures; accepted for publication in Phys. Rev.
    • 

    corecore