1,117 research outputs found

    Advanced technology for minimum weight pressure vessel system

    Get PDF
    Bosses were made of fiber/resin composite materials to evaluate their potential in lightweight pressure vessels. An approximate 25% weight savings over the standard aluminum boss was achieved without boss failures during burst tests. Polymer liners and metal liners are used in fiber composite pressure vessels for containment of gases. The internal support of these liners required during the filament winding process has previously been provided by dissolvable salt mandrels. An internal pressurization technique has been developed which allows overwinding the liner without other means of support and without collapse. Study was made of several additional concepts including styrene/Saran, styrene/flexible epoxy

    Sagnac effect in a chain of mesoscopic quantum rings

    Full text link
    The ability to interferometrically detect inertial rotations via the Sagnac effect has been a strong stimulus for the development of atom interferometry because of the potential 10^{10} enhancement of the rotational phase shift in comparison to optical Sagnac gyroscopes. Here we analyze ballistic transport of matter waves in a one dimensional chain of N coherently coupled quantum rings in the presence of a rotation of angular frequency, \Omega. We show that the transmission probability, T, exhibits zero transmission stop gaps as a function of the rotation rate interspersed with regions of rapidly oscillating finite transmission. With increasing N, the transition from zero transmission to the oscillatory regime becomes an increasingly sharp function of \Omega with a slope \partialT/\partial \Omega N^2. The steepness of this slope dramatically enhances the response to rotations in comparison to conventional single ring interferometers such as the Mach-Zehnder and leads to a phase sensitivity well below the standard quantum limit

    High-performance fiber/epoxy composite pressure vessels

    Get PDF
    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended

    Extracting Structural Information of a Heteropolymer from Force-Extension Curves

    Full text link
    We present a theory for the reverse analysis on the sequence information of a single H/P two-letter random hetero-polymer (RHP) from its force-extension(f-z) curves during quasi static stretching. Upon stretching of a self-assembled RHP, it undergoes several structural transitions. The typical elastic response of a hetero-polymeric globule is a set of overlapping saw-tooth patterns. With consideration of the height and the position of the overlapping saw-tooth shape, we analyze the possibility of extracting the binding energies of the internal domains and the corresponding block sizes of the contributing conformations.Comment: 5 figures 7 page

    Acoustoelectric effect in a finite-length ballistic quantum channel

    Full text link
    The dc current induced by a coherent surface acoustic wave (SAW) of wave vector q in a ballistic channel of length L is calculated. The current contains two contributions, even and odd in q. The even current exists only in a asymmetric channel, when the electron reflection coefficients r_1 and r_2 at both channel ends are different. The direction of the even current does not depend on the direction of the SAW propagation, but is reversed upon interchanging r_1 and r_2. The direction of the odd current is correlated with the direction of the SAW propagation, but is insensitive to the interchange of r_1 and r_2. It is shown that both contributions to the current are non zero only when the electron reflection coefficients at the channel ends are energy dependent. The current exhibits geometric oscillations as function of qL. These oscillations are the hallmark of the coherence of the SAW and are completely washed out when the current is induced by a flux of non-coherent phonons. The results are compared with those obtained previously by different methods and under different assumptions.Comment: 7 pages, 2 figure

    Case–control, kin-cohort and meta-analyses provide no support for STK15 F31I as a low penetrance colorectal cancer allele

    Get PDF
    Recently, homozygosity for T91A single-nucleotide polymorphism (SNP) in the serine/threonine kinase (STK15) gene, which generates the substitution F31I has been proposed to increase the risk of a number of tumours including colorectal cancer (CRC). To further evaluate the relationship between STK15 F31I and risk of CRC, we genotyped 2558 CRC cases and 2680 controls for this polymorphism. We found no evidence that homozygosity for the STK15 31I genotype confers an increased risk of CRC (odds ratio=0.95, 95% confidence interval (CI): 0.74–1.24). We also conducted a kin-cohort analysis to assess risk among first-degree relatives of the CRC cases. The hazard ratio for I/I homozygotes compared to F/F homozygotes was 1.65 (95% CI: 0.39–3.17). A meta-analysis of our case–control data and three previous studies also provided no evidence of an elevated risk of CRC associated with homozygosity. These data provide no support for the hypothesis that sequence variation in STK15 defined by SNP F31I per se confers an elevated risk of CRC

    Ca 2+

    Full text link

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt
    • …
    corecore