34 research outputs found

    The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor

    Get PDF
    Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine

    New Versus Classic Antiepileptic Drug Therapy In Pediatric Epilepsy

    No full text
    Abstract: The current study was designed to compare the efficacy and safety between new and classic antiepileptic drugs (AEDs). Children diagnosed with epilepsy from birth to 12 years old were included in the present study. All data were collected retrospectively and twenty six children were enrolled in the analysis. Predominant seizure types were generalized tonic-clonic and the classical drugs were the most commonly prescribed drugs. Five patients (19%) among those who were treated with classic drugs become seizure free compared to 1 patient only (4%) who became seizure free from those who were treated with new antiepileptics. No side effects were reported except for 2 patients receiving the classic drug, carbamazepine, who developed skin rashes and dizziness. In conclusion, the results of the current study showed that the classic AEDs remain essential and still considered as the first line treatment in pediatric epilepsy

    Somatic Mutations Alter Interleukin Signaling Pathways in Grade II Invasive Breast Cancer Patients: An Egyptian Experience

    No full text
    This study aimed to investigate the impact of somatic mutations on various interleukin signaling pathways associated with grade II invasive breast cancer (BC) in Egyptian patients to broaden our understanding of their role in promoting carcinogenesis. Fifty-five grade II invasive BC patients were included in this study. Data for somatic mutations in 45 BC patients were already available from a previous study. Data for somatic mutations of 10 new BC patients were included in the current study. Somatic mutations were identified using targeted next-generation sequencing (NGS) to study their involvement in interleukin signaling pathways. For pathway analysis, we used ingenuity variant analysis (IVA) to identify the most significantly altered pathways. We identified somatic mutations in components of the interleukin-2, interleukin-6, and inter-leukin-7 signaling pathways, including mutations in JAK1, JAK2, JAK3, SOCS1, IL7R, MCL1, BCL2, MTOR, and IL6ST genes. Interestingly, six mutations which were likely to be novel deleterious were identified: two in the SCH1 gene, two in the IL2 gene, and one in each of the IL7R and JUN genes. According to IVA analysis, interleukin 2, interleukin 6, and interleukin 7 signaling pathways were the most altered in 34.5%, 29%, and 23.6% of our BC group, respectively. Our multigene panel sequencing analysis reveals that our BC patients have altered interleukin signaling pathways. So, these results highlight the prominent role of interleukins in the carcinogenesis process and suggest its potential role as promising candidates for personalized therapy in Egyptian patients

    Frequency of Pathogenic Germline Mutations in Early and Late Onset Familial Breast Cancer Patients Using Multi-Gene Panel Sequencing: An Egyptian Study

    No full text
    Background: Precision oncology has been increasingly used in clinical practice and rapidly evolving in the oncology field. Thus, this study was performed to assess the frequency of germline mutations in early and late onset familial breast cancer (BC) Egyptian patients using multi-gene panel sequencing to better understand the contribution of the inherited germline mutations in BC predisposition. Moreover, to determine the actionable deleterious mutations associated with familial BC that might be used as biomarker for early cancer detection. Methods: Whole blood samples were collected from 101 Egyptian patients selected for BC family history, in addition to 50 age-matched healthy controls. A QIAseq targeted DNA panel (human BC panel) was used to assess the frequency of germline mutations. Results: A total of 58 patients (57.4%) out of 101 were found to have 27 deleterious germline mutations in 11 cancer susceptibility genes. Of them, 32 (31.6%) patients carried more than one pathogenic mutation and each one carried at least one pathogenic mutation. The major genes harboring the pathogenic mutations were: ATM, BRCA2, BRCA1, VHL, MSH6, APC, CHEK2, MSH2, MEN1, PALB2, and MUTYH. Thirty-one patients (30.6%) had BRCA2 mutations and twenty (19.8%) had BRCA1 mutations. Our results showed that exon 10 and exon 11 harbored 3 and 5 mutations, respectively, in BRCA1 and BRCA2 genes. Our analysis also revealed that the VHL gene significantly co-occurred with each of the BRCA2 gene (p = 0.003, event ratio 11/21), the MSH2 gene (p = 0.01, 4/10), the CHEK2 gene (p = 0.02, 4/11), and the MSH6 gene (p = 0.04, 4/12). In addition, the APC gene significantly co-occurred with the MSH2 gene (p = 0.01, 3/7). Furthermore, there was a significant mutually exclusive event between the APC gene and the ATM gene (p = 0.04, 1/36). Interestingly, we identified population specific germline mutations in genes showing potentials for targeted therapy to meet the need for incorporating precision oncology into clinical practice. For example, the mutations identified in the ATM, APC, and MSH2 genes. Conclusions: Multi-gene panel sequencing was used to detect the deleterious mutations associated with familial BC, which in turns mitigate the essential need for implementing next generation sequencing technologies in precision oncology to identify cancer predisposing genes. Moreover, identifying DNA repair gene mutations, with focus on non-BRCA genes, might serve as candidates for targeted therapy and will be increasingly used in precision oncology
    corecore