24,301 research outputs found

    ESA activities in space laser sounding and ranging

    Get PDF
    Laser remote sensing from space is undoubtedly one of the most promising means to obtain essential atmospheric and geophysical parameters on a global scale. Efforts including feasibility assessments, technology developments, and mission definition studies are in progress at the European Space Agency (ESA) to prepare for the prospective use of laser remote sensing systems in space. An overview of the programs under way is presented and the perspectives of laser remote sensing in the context of ESA's Long-Term European Space Plan are discussed

    Triangulated Manifolds with Few Vertices: Centrally Symmetric Spheres and Products of Spheres

    Full text link
    The aim of this paper is to give a survey of the known results concerning centrally symmetric polytopes, spheres, and manifolds. We further enumerate nearly neighborly centrally symmetric spheres and centrally symmetric products of spheres with dihedral or cyclic symmetry on few vertices, and we present an infinite series of vertex-transitive nearly neighborly centrally symmetric 3-spheres.Comment: 26 pages, 8 figure

    Small examples of non-constructible simplicial balls and spheres

    Full text link
    We construct non-constructible simplicial dd-spheres with d+10d+10 vertices and non-constructible, non-realizable simplicial dd-balls with d+9d+9 vertices for d≥3d\geq 3.Comment: 9 pages, 3 figure

    The Dimensions of Individual Strings and Sequences

    Get PDF
    A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0,1]. Sequences that are random (in the sense of Martin-Lof) have dimension 1, while sequences that are decidable, \Sigma^0_1, or \Pi^0_1 have dimension 0. It is shown that for every \Delta^0_2-computable real number \alpha in [0,1] there is a \Delta^0_2 sequence S such that \dim(S) = \alpha. A discrete version of constructive dimension is also developed using termgales, which are supergale-like functions that bet on the terminations of (finite, binary) strings as well as on their successive bits. This discrete dimension is used to assign each individual string w a dimension, which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the limit infimum of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its length and its dimension. This gives a new characterization of algorithmic information and a new proof of Mayordomo's recent theorem stating that the dimension of a sequence is the limit infimum of the average Kolmogorov complexity of its first n bits. Every sequence that is random relative to any computable sequence of coin-toss biases that converge to a real number \beta in (0,1) is shown to have dimension \H(\beta), the binary entropy of \beta.Comment: 31 page

    Combinatorial 3-manifolds with 10 vertices

    Full text link
    We give a complete enumeration of all combinatorial 3-manifolds with 10 vertices: There are precisely 247882 triangulated 3-spheres with 10 vertices as well as 518 vertex-minimal triangulations of the sphere product S2×S1S^2\times S^1 and 615 triangulations of the twisted sphere product S^2_\times_S^1. All the 3-spheres with up to 10 vertices are shellable, but there are 29 vertex-minimal non-shellable 3-balls with 9 vertices.Comment: 9 pages, minor revisions, to appear in Beitr. Algebra Geo
    • …
    corecore