24,301 research outputs found
ESA activities in space laser sounding and ranging
Laser remote sensing from space is undoubtedly one of the most promising means to obtain essential atmospheric and geophysical parameters on a global scale. Efforts including feasibility assessments, technology developments, and mission definition studies are in progress at the European Space Agency (ESA) to prepare for the prospective use of laser remote sensing systems in space. An overview of the programs under way is presented and the perspectives of laser remote sensing in the context of ESA's Long-Term European Space Plan are discussed
Triangulated Manifolds with Few Vertices: Centrally Symmetric Spheres and Products of Spheres
The aim of this paper is to give a survey of the known results concerning
centrally symmetric polytopes, spheres, and manifolds. We further enumerate
nearly neighborly centrally symmetric spheres and centrally symmetric products
of spheres with dihedral or cyclic symmetry on few vertices, and we present an
infinite series of vertex-transitive nearly neighborly centrally symmetric
3-spheres.Comment: 26 pages, 8 figure
Small examples of non-constructible simplicial balls and spheres
We construct non-constructible simplicial -spheres with vertices
and non-constructible, non-realizable simplicial -balls with vertices
for .Comment: 9 pages, 3 figure
The Dimensions of Individual Strings and Sequences
A constructive version of Hausdorff dimension is developed using constructive
supergales, which are betting strategies that generalize the constructive
supermartingales used in the theory of individual random sequences. This
constructive dimension is used to assign every individual (infinite, binary)
sequence S a dimension, which is a real number dim(S) in the interval [0,1].
Sequences that are random (in the sense of Martin-Lof) have dimension 1, while
sequences that are decidable, \Sigma^0_1, or \Pi^0_1 have dimension 0. It is
shown that for every \Delta^0_2-computable real number \alpha in [0,1] there is
a \Delta^0_2 sequence S such that \dim(S) = \alpha.
A discrete version of constructive dimension is also developed using
termgales, which are supergale-like functions that bet on the terminations of
(finite, binary) strings as well as on their successive bits. This discrete
dimension is used to assign each individual string w a dimension, which is a
nonnegative real number dim(w). The dimension of a sequence is shown to be the
limit infimum of the dimensions of its prefixes.
The Kolmogorov complexity of a string is proven to be the product of its
length and its dimension. This gives a new characterization of algorithmic
information and a new proof of Mayordomo's recent theorem stating that the
dimension of a sequence is the limit infimum of the average Kolmogorov
complexity of its first n bits.
Every sequence that is random relative to any computable sequence of
coin-toss biases that converge to a real number \beta in (0,1) is shown to have
dimension \H(\beta), the binary entropy of \beta.Comment: 31 page
Combinatorial 3-manifolds with 10 vertices
We give a complete enumeration of all combinatorial 3-manifolds with 10
vertices: There are precisely 247882 triangulated 3-spheres with 10 vertices as
well as 518 vertex-minimal triangulations of the sphere product
and 615 triangulations of the twisted sphere product S^2_\times_S^1.
All the 3-spheres with up to 10 vertices are shellable, but there are 29
vertex-minimal non-shellable 3-balls with 9 vertices.Comment: 9 pages, minor revisions, to appear in Beitr. Algebra Geo
- …