36,108 research outputs found
On Virtue and Peace: Creating a Workplace Where People Can Flourish
Nationbuilders in less developed countries need to understand how Western legal systems with "property" at their center have materially accounted for Western prosperity and liberty, but legal definitions of property are so abstruse that explication of this vital concept is made difficult. This paper finds an historical definitional essence to property in the right to exclude and maintains that liberty and property both share this essential meaning. The problems of corporate governance are then placed in the context of the exclusionary concept of property/liberty.
Experimental determination of cosmic ray charged particle intensity profiles in the atmosphere
Absolute cosmic-ray free air ionization and charged particle fluxes and dose rates throughout the atmosphere were measured on a series of balloon flights that commenced in 1968. Argon-filled ionization chambers equipped with solid-state electrometers, with different gas pressures and steel wall thicknesses, and a pair of aluminum-wall Gm counters have provided the basic data. These data are supplemented by measurements with air-filled and tissue equivalent ionization chambers and a scintillation spectrometer. Laboratory experiments together with analyses of the theoretical aspects of the detector responses to cosmic radiation indicate that these profiles can be determined to an overall accuracy of + or - 5 percent
Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration
Quasi-chemical theory is utilized to analyze the roles of solute polarization
and size in determining the structure and thermodynamics of bulk anion
hydration for the Hofmeister series Cl, Br, and I. Excellent
agreement with experiment is obtained for whole salt hydration free energies
using the polarizable AMOEBA force field. The quasi-chemical approach exactly
partitions the solvation free energy into inner-shell, outer-shell packing, and
outer-shell long-ranged contributions by means of a hard-sphere condition.
Small conditioning radii, even well inside the first maximum of the
ion-water(oxygen) radial distribution function, result in Gaussian behavior for
the long-ranged contribution that dominates the ion hydration free energy. The
spatial partitioning allows for a mean-field treatment of the long-ranged
contribution, leading to a natural division into first-order electrostatic,
induction, and van der Waals terms. The induction piece exhibits the strongest
ion polarizability dependence, while the larger-magnitude first-order
electrostatic piece yields an opposing but weaker polarizability dependence. In
addition, a structural analysis is performed to examine the solvation
anisotropy around the anions. As opposed to the hydration free energies, the
solvation anisotropy depends more on ion polarizability than on ion size:
increased polarizability leads to increased anisotropy. The water dipole
moments near the ion are similar in magnitude to bulk water, while the ion
dipole moments are found to be significantly larger than those observed in
quantum mechanical studies. Possible impacts of the observed over-polarization
of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy
Phase II of the ASCE Benchmark Study on SHM
The task group on structural health monitoring of the Dynamic Committee of ASCE was formed in
1999 at the 12
th
Engineering Mechanics Conference. The task group has designed a number of analytical
studies on a benchmark structure and there are plans to follow these with an experimental program. The
first phase of the analytical studies was completed in 2001. The second phase, initiated in the summer of
2001, was formulated in the light of the experience gained on phase I and focuses on increasing realism in
the simulation of the discrepancies between the actual structure and the mathematical model used in the
analysis. This paper describes the rational that lead the SHM task group to the definition of phase II and
presents the details of the cases that are being considered
Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants
The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium
Dynamics towards the Feigenbaum attractor
We expose at a previously unknown level of detail the features of the
dynamics of trajectories that either evolve towards the Feigenbaum attractor or
are captured by its matching repellor. Amongst these features are the
following: i) The set of preimages of the attractor and of the repellor are
embedded (dense) into each other. ii) The preimage layout is obtained as the
limiting form of the rank structure of the fractal boundaries between attractor
and repellor positions for the family of supercycle attractors. iii) The joint
set of preimages for each case form an infinite number of families of
well-defined phase-space gaps in the attractor or in the repellor. iv) The gaps
in each of these families can be ordered with decreasing width in accord to
power laws and are seen to appear sequentially in the dynamics generated by
uniform distributions of initial conditions. v) The power law with log-periodic
modulation associated to the rate of approach of trajectories towards the
attractor (and to the repellor) is explained in terms of the progression of gap
formation. vi) The relationship between the law of rate of convergence to the
attractor and the inexhaustible hierarchy feature of the preimage structure is
elucidated.Comment: 8 pages, 12 figure
Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach
Recently strong evidence has been found in favor of a BCS-like condensation
of excitons in 1\textit{T}-TiSe. Theoretical photoemission intensity maps
have been generated by the spectral function calculated within the excitonic
condensate phase model and set against experimental angle-resolved
photoemission spectroscopy data. Here, the calculations in the framework of
this model are presented in detail. They represent an extension of the original
excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf
158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A
detailed analysis of its properties and further comparison with experiment are
also discussedComment: Submitted to PRB, 11 pages, 7 figure
SELECTED ISSUES AND FEATURES OF UNDERGRADUATE INSTRUCTION IN AGRICULTURAL ECONOMICS
Teaching/Communication/Extension/Profession,
- …