24 research outputs found

    Spontaneous formation of domain wall lattices in two spatial dimensions

    Full text link
    We show that the process of spontaneous symmetry breaking can trap a field theoretic system in a highly non-trivial state containing a lattice of domain walls. In one large compact space dimension, a lattice is inevitably formed. In two dimensions, the probability of lattice formation depends on the ratio of sizes L_x, L_y of the spatial dimensions. We find that a lattice can form even if R=L_y/L_x is of order unity. We numerically determine the number of walls in the lattice as a function of L_x and L_y.Comment: 6 pages, 6 figures. Background material added and minor corrections included. Final version to be published in Phys. Rev.

    Classicalization of Quantum Fluctuation in Inflationary Universe

    Full text link
    We discuss the classicalization of a quantum state induced by an environment in the inflationary stage of the universe. The classicalization is necessary for the homogeneous ground sate to become classical non-homogeneous one accompanied with the statistical fluctuation, which is a plausible candidate for the seeds of structure formation. Using simple models, we show that i) the two classicalization criteria, the classical correlation and quantum decoherence, are simultaneously satisfied by the environment and that ii) the power spectrum of the resultant statistical fluctuation depends upon the detail of the classicalization process. Especially, the result ii) means that, taking account of the classicalization process, the inflationary scenario does not necessarily predict the unique spectrum which is usually believed.Comment: 24 pages, Latex, 2 Postscript figure

    On formation of domain wall lattices

    Full text link
    We study the formation of domain walls in a phase transition in which an S_5\times Z_2 symmetry is spontaneously broken to S_3\times S_2. In one compact spatial dimension we observe the formation of a stable domain wall lattice. In two spatial dimensions we find that the walls form a network with junctions, there being six walls to every junction. The network of domain walls evolves so that junctions annihilate anti-junctions. The final state of the evolution depends on the relative dimensions of the simulation domain. In particular we never observe the formation of a stable lattice of domain walls for the case of a square domain but we do observe a lattice if one dimension is somewhat smaller than the other. During the evolution, the total wall length in the network decays with time as t^{-0.71}, as opposed to the usual t^{-1} scaling typical of regular Z_2 networks.Comment: 7 pages, 4 figures. Minor changes, final version accepted for publication in Phys. Rev.

    Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos

    Full text link
    Human-Object Interaction (HOI) recognition in videos is important for analyzing human activity. Most existing work focusing on visual features usually suffer from occlusion in the real-world scenarios. Such a problem will be further complicated when multiple people and objects are involved in HOIs. Consider that geometric features such as human pose and object position provide meaningful information to understand HOIs, we argue to combine the benefits of both visual and geometric features in HOI recognition, and propose a novel Two-level Geometric feature-informed Graph Convolutional Network (2G-GCN). The geometric-level graph models the interdependency between geometric features of humans and objects, while the fusion-level graph further fuses them with visual features of humans and objects. To demonstrate the novelty and effectiveness of our method in challenging scenarios, we propose a new multi-person HOI dataset (MPHOI-72). Extensive experiments on MPHOI-72 (multi-person HOI), CAD-120 (single-human HOI) and Bimanual Actions (two-hand HOI) datasets demonstrate our superior performance compared to state-of-the-arts.Comment: Accepted by ECCV 202

    Decoherence from a Chaotic Environment: An Upside Down "Oscillator" as a Model

    Full text link
    Chaotic evolutions exhibit exponential sensitivity to initial conditions. This suggests that even very small perturbations resulting from weak coupling of a quantum chaotic environment to the position of a system whose state is a non-local superposition will lead to rapid decoherence. However, it is also known that quantum counterparts of classically chaotic systems lose exponential sensitivity to initial conditions, so this expectation of enhanced decoherence is by no means obvious. We analyze decoherence due to a "toy" quantum environment that is analytically solvable, yet displays the crucial phenomenon of exponential sensitivity to perturbations. We show that such an environment, with a single degree of freedom, can be far more effective at destroying quantum coherence than a heat bath with infinitely many degrees of freedom. This also means that the standard "quantum Brownian motion" model for a decohering environment may not be as universally applicable as it once was conjectured to be.Comment: RevTeX, 29 pages, 5 EPS figures. Substantially rewritten analysis, improved figures, additional references, and errors fixed. Final version (to appear in PRA

    Analytic Solutions of The Wheeler-DeWitt Equation in Spherically Symmetric Space-time

    Full text link
    We study the quantum theory of the Einstein-Maxwell action with a cosmological term in the spherically symmetric space-time, and explored quantum black hole solutions in Reissner-Nordstrom-de Sitter geometry. We succeeded to obtain analytic solutions to satisfy both the energy and momentum constraints.Comment: LaTeX file, 15 page

    de Broglie-Bohm Interpretation for the Wave Function of Quantum Black Holes

    Get PDF
    We study the quantum theory of the spherically symmetric black holes. The theory yields the wave function inside the apparent horizon, where the role of time and space coordinates is interchanged. The de Broglie-Bohm interpretation is applied to the wave function and then the trajectory picture on the minisuperspace is introduced in the quantum as well as the semi-classical region. Around the horizon large quantum fluctuations on the trajectories of metrics UU and VV appear in our model, where the metrics are functions of time variable TT and are expressed as ds2=−α2/UdT2+UdR2+VdΩ2ds^2=-{\alpha^2}/U dT^2 + U dR^2 + V d\Omega^2. On the trajectories, the classical relation U=−V1/2+2GmU=-V^{1/2}+2Gm holds, and the event horizon U=0 corresponds to the classical apparent horizon on V=2GmV=2Gm. In order to investigate the quantum fluctuation near the horizon, we study a null ray on the dBB trajectory and compare it with the one in the classical black hole geometry.Comment: 20 pages, Latex, 7 Postscript figure
    corecore