1,450 research outputs found
On the Moduli Problem and Baryogenesis in Gauge-mediated SUSY Breaking Models
We investigate whether the Affleck-Dine mechanism can produce sufficient
baryon number of the universe in the gauge-mediated SUSY breaking models, while
evading the cosmological moduli problem by late-time entropy production. We
find that the Q-ball formation renders the scenario very difficult to work,
irrespective of the detail mechanism of the entropy production.Comment: 11 pages, RevTeX, 5 postscript figures include
Q-ball formation in the wake of Hubble-induced radiative corrections
We discuss some interesting aspects of the -ball formation during the
early oscillations of the flat directions. These oscillations are triggered by
the running of soft stemming from the nonzero energy density
of the Universe. However, this is quite different from the standard -ball formation. The running in presence of gauge and Yukawa couplings
becomes strong if is sufficiently large. Moreover, the -balls which are formed during the early oscillations constantly evolve, due
to the redshift of the Hubble-induced soft mass, until the low-energy
supersymmtery breaking becomes dominant. For smaller , -balls are not formed during early oscillations because of the shrinking of
the instability band due to the Hubble expansion. In this case the -balls are formed only at the weak scale, but typically carry smaller
charges, as a result of their amplitude redshift. Therefore, the Hubble-induced
corrections to the flat directions give rise to a successful -ball
cosmology.Comment: 7 revtex pages, few references corrected and added, final version to
appear in Phys. Rev.
Entropy production by Q-ball decay for diluting long-lived charged particles
The cosmic abundance of a long-lived charged particle such as a stau is
tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways
to evade the constraints is to dilute those particles by a huge entropy
production. We evaluate the dilution factor in a case that non-relativistic
matter dominates the energy density of the universe and decays with large
entropy production. We find that large Q balls can do the job, which is
naturally produced in the gauge-mediated supersymmetry breaking scenario.Comment: 8 pages, 1 figur
The Effect of Senior Medical Student Tutors Compared to Faculty Tutors on Examination Scores of First- and Second-Year Medical Students in Two Problem-Based Learning Courses
At the University of Hawaii John A. Burns School of Medicine, senior medical student volunteers are used as tutors for some problem-based learning groups in both the first and second years. Previous studies on the advantages and disadvantages of student tutors compared to faculty tutors have been equivocal. This study expected to answer the following question: Are there differences in examination scores for learners in their first or second year tutored by fourth-year medical students compared to those tutored by faculty members on two different types of examinations? Students were assessed using more clinically relevant, modified essay question examinations and multiple-choice question examinations. Student grades for eight consecutive years were sorted for year and type of examination into those tutored by a faculty member and those tutored primarily by a senior medical student. The only difference favored faculty tutors on second-year examinations that contained more clinically relevant questions. This phenomenon may be explained by the clinical expertise of faculty tutors making a difference in the second year but not the first year
Indirect RKKY interaction in any dimensionality
We present an analytical method which enables one to find the exact spatial
dependence of the indirect RKKY interaction between the localized moments via
the conduction electrons for the arbitrary dimensionality . The
corresponding momentum dependence of the Lindhard function is exactly found for
any as well. Demonstrating the capability of the method we find the RKKY
interaction in a system of metallic layers weakly hybridized to each other.
Along with usual in-plane oscillations the RKKY interaction has the
sign-reversal character in a direction perpendicular to layers, thus favoring
the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.
The oscillation effects on thermalization of the neutrinos in the universe with low reheating temperature
We study how the oscillations of the neutrinos affect their thermalization
process during the reheating period with temperature O(1) MeV in the early
universe. We follow the evolution of the neutrino density matrices and
investigate how the predictions of big bang nucleosynthesis vary with the
reheating temperature. For the reheating temperature of several MeV, we find
that including the oscillations makes different predictions, especially for
He abundance. Also, the effects on the lower bound of the reheating
temperature from cosmological observations are discussed.Comment: 24 pages, 8 figures; references and explanatory comments added,
conclusion unchange
Thermal Properties of Heavy Fermion Compound YbP
Low-temperature specific heat and its field-dependence up to 16 T was
measured in a stoichiometric single crystal of YbP. A sharp peak was observed
at {\it T} = 0.53 K in zero magnetic field. Application of external
field seems to induce a new magnetic phase above 11 T. The field dependence of
the transition temperature in the high-field phase is different from that of
the low field phase. The linear coefficient of the electronic specific heat is
estimated as 120 mJ/mole K from low temperature specfic heat, suggesting
heavy Fermion state in YbP.Comment: to be published in J.Phys.Soc.Jpn on May, 200
Multipolar Interactions in the Anderson Lattice with Orbital Degeneracy
Microscopic investigation is performed for intersite multipolar interactions
in the orbitally degenerate Anderson lattice, with CeB taken as an
exemplary target. In addition to the intermediate state,
Hund's-rule ground states are included as intermediate states for the
interactions. The conduction-band states are taken as plane waves and the
hybridization as spherically symmetric. The spatial dependences of multipolar
interactions are given by the relative weight of partial wave components along
the pair of sites. It is clarified how the the anisotropy arises in the
interactions depending on the orbital degeneracy and the spatial configuration.
The stability of the antiferro-quadrupole order in the phase II of
CeB is consistent with our model. Moreover, the pseudo-dipole interactions
follow a tendency required by the phenomenological model for the phase III.Comment: 30 pages, 4 figure
- âŠ