5,191 research outputs found

    Excitonic Dynamical Franz-Keldysh Effect

    Get PDF
    The Dynamical Franz-Keldysh Effect is exposed by exploring near-bandgap absorption in the presence of intense THz electric fields. It bridges the gap between the DC Franz- Keldysh effect and multi-photon absorption and competes with the THz AC Stark Effect in shifting the energy of the excitonic resonance. A theoretical model which includes the strong THz field non-perturbatively via a non-equilibrium Green Functions technique is able to describe the Dynamical Franz-Keldysh Effect in the presence of excitonic absorption.Comment: 4 pages in revtex with 5 figures included using epsf. Submitted to Physical Review Letter

    Kinetics of four-wave mixing for a 2D magneto-plasma in strong magnetic fields

    Full text link
    We investigate the femtosecond kinetics of an optically excited 2D magneto-plasma at intermediate and high densities under a strong magnetic field perpendicular to the quantum well (QW). We assume an additional weak lateral confinement which lifts the degeneracy of the Landau levels partially. We calculate the femtosecond dephasing and relaxation kinetics of the laser pulse excited magneto-plasma due to bare Coulomb potential scattering, because screening is under these conditions of minor importance. In particular the time-resolved and time-integrated four-wave mixing (FWM) signals are calculated by taking into account three Landau subbands in both the valance and the conduction band assuming an electron-hole symmetry. The FWM signals exhibit quantum beats mainly with twice the cyclotron frequency. Contrary to general expectations, we find no pronounced slowing down of the dephasing with increasing magnetic field. On the contrary, one obtains a decreasing dephasing time because of the increase of the Coulomb matrix elements and the number of states in a given Landau subband. In the situation when the loss of scattering channels exceeds these increasing effects, one gets a slight increase at the dephasing time. However, details of the strongly modulated scattering kinetics depend sensitively on the detuning, the plasma density, and the spectral pulse width relative to the cyclotron frequency.Comment: 13 pages, in RevTex format, 10 figures, Phys. Rev B in pres

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Signatures of spin in the n=1/3 Fractional Quantum Hall Effect

    Get PDF
    The activation gap Delta of the fractional quantum Hall state at constant filling n =1/3 is measured in wide range of perpendicular magnetic field B. Despite the full spin polarization of the incompressible ground state, we observe a sharp crossover between a low-field linear dependence of Delta on B associated to spin texture excitations and a Coulomb-like behavior at large B. From the global gap-reduction we get information about the mobility edges in the fractional quantum Hall regime.Comment: 4 pages, 3 figure

    Transient regime in non-linear transport through many-level quantum dots

    Full text link
    We investigate the nonstationary electronic transport in noninteracting nanostructures driven by a finite bias and time-dependent signals applied at their contacts to the leads. The systems are modelled by a tight-binding Hamiltonian and the transient currents are computed from the non-equilibrium Green-Keldysh formalism. The numerical implementation is not restricted to weak coupling to the leads and does not imply the wide-band limit assumption for the spectral width of the leads. As an application of the method we study in detail the transient behavior and the charge dynamics in single and double quantum dots connected to leads by a step-like potential, but the method allows as well the consideration of non-periodic potentials or short pulses. We show that when the higher energy levels of the isolated system are located within the bias window of the leads the transient current approaches the steady state in a non-oscillatory smooth fashion. At moderate coupling to the leads and fixed bias the transient acquires a step-like structure, the length of the steps increasing with the system size. The number of levels inside a finite bias window can be tuned by a constant gate potential. We find also that the transient behavior depends on the specific way of coupling the leads to the mesoscopic system.Comment: RevTeX, 12 pages, 11 include .eps figure

    Three-terminal thermoelectric transport through a molecule placed on an Aharonov-Bohm ring

    Full text link
    The thermoelectric transport through a ring threaded by an Aharonov-Bohm flux, with a molecular bridge on one of its arms, is analyzed. The transport electrons also interact with the vibrational excitations of that molecule. This nano-system is connected to three terminals: two are electronic reservoirs, which supply the transport electrons, and the third is the phonon bath which thermalizes the molecular vibrations. Expressions for the transport coefficients, relating all charge and heat currents to the temperature and chemical potential differences between the terminals, are derived to second order in the electron-vibration coupling. At linear response, all these coefficients obey the full Onsager-Casimir relations. When the phonon bath is held at a temperature different from those of the electronic reservoirs, a heat current exchanged between the molecular vibrations and the transport electrons can be converted into electric and/or heat electronic currents. The related transport coefficients, which exist only due to the electron-vibration coupling, change sign under the interchange between the electronic terminals and the sign change of the magnetic flux. It is also demonstrated that the Aharonov-Bohm flux can enhance this type of conversion.Comment: Added clearer kists of the new result

    Photon position measure

    Full text link
    The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon

    Carrier dynamics and coherent acoustic phonons in nitride heterostructures

    Full text link
    We model generation and propagation of coherent acoustic phonons in piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode structure and compute the time resolved reflectivity signal in simulated pump-probe experiments. Carriers are created in the InGaN wells by ultrafast pumping below the GaN band gap and the dynamics of the photoexcited carriers is treated in a Boltzmann equation framework. Coherent acoustic phonons are generated in the quantum well via both deformation potential electron-phonon and piezoelectric electron-phonon interaction with photogenerated carriers, with the latter mechanism being the dominant one. Coherent longitudinal acoustic phonons propagate into the structure at the sound speed modifying the optical properties and giving rise to a giant oscillatory differential reflectivity signal. We demonstrate that coherent optical control of the differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure

    Long range scattering effects on spin Hall current in pp-type bulk semiconductors

    Full text link
    Employing a nonequilibrium Green's function approach, we examine the effects of long-range hole-impurity scattering on spin-Hall current in pp-type bulk semiconductors within the framework of the self-consistent Born approximation. We find that, contrary to the null effect of short-range scattering on spin-Hall current, long-range collisions do produce a nonvanishing contribution to the spin-Hall current, which is independent of impurity density in the diffusive regime and relates only to hole states near the Fermi surface. The sign of this contribution is opposite to that of the previously predicted disorder-independent spin-Hall current, leading to a sign change of the total spin-Hall current as hole density varies. Furthermore, we also make clear that the disorder-independent spin-Hall effect is a result of an interband polarization directly induced by the dc electric field with contributions from all hole states in the Fermi sea.Comment: 9 pages, 1 figur

    Numerical time propagation of quantum systems in radiation fields

    Full text link
    Atoms, molecules or excitonic quasiparticles, for which excitations are induced by external radiation fields and energy is dissipated through radiative decay, are examples of driven open quantum systems. We explain the use of commutator-free exponential time-propagators for the numerical solution of the associated Schr\"odinger or master equations with a time-dependent Hamilton operator. These time-propagators are based on the Magnus series but avoid the computation of commutators, which makes them suitable for the efficient propagation of systems with a large number of degrees of freedom. We present an optimized fourth order propagator and demonstrate its efficiency in comparison to the direct Runge-Kutta computation. As an illustrative example we consider the parametrically driven dissipative Dicke model, for which we calculate the periodic steady state and the optical emission spectrum.Comment: 23 pages, 11 figure
    • …
    corecore