824 research outputs found
Correlation of optical conductivity and ARPES spectra of strong-coupling large polarons and its display in cuprates
Common approach is used to calculate band due to strong-coupling large
polaron (SCLP) photodissociation in ARPES and in optical conductivity (OC)
spectra. It is based on using the coherent-states representation for the phonon
field in SCLP. The calculated positions of both band maximums are universal
functions of one parameter - the SCLP binding energy Ep: ARPES band maximum
lies at binding energy about 3.2Ep; the OC band maximum is at the photon energy
about 4.2Ep. The half-widths of the bands are mainly determined by Ep and
slightly depend on Frohlich electron-phonon coupling constant: for its value
6-8 the ARPES band half-width is 1.7-1.3Ep and the OC band half-width is
2.8-2.2Ep. Using these results one can predict approximate position of ARPES
band maximum and half-width from the maximum of mid-IR OC band and vice versa.
Comparison of the results with experiments leads to a conclusion that
underdoped cuprates contain SCLPs with Ep=0.1-0.2 eV that is in good conformity
with the medium parameters in cuprates. The values of the polaron binding
energy determined from experimental ARPES and OC spectra of the same material
are in good conformity too: the difference between them is within 10 percent.Comment: 17 pages, 6 figure
Minimal coupling method and the dissipative scalar field theory
Quantum field theory of a damped vibrating string as the simplest dissipative
scalar field investigated by its coupling with an infinit number of
Klein-Gordon fields as the environment by introducing a minimal coupling
method. Heisenberg equation containing a dissipative term proportional to
velocity obtained for a special choice of coupling function and quantum
dynamics for such a dissipative system investigated. Some kinematical relations
calculated by tracing out the environment degrees of freedom. The rate of
energy flowing between the system and it's environment obtained.Comment: 15 pages, no figur
Coherent instabilities in a semiconductor laser with fast gain recovery
We report the observation of a coherent multimode instability in quantum
cascade lasers (QCLs), which is driven by the same fundamental mechanism of
Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH)
instability predicted 40 years ago for ring lasers. The threshold of the
observed instability is significantly lower than in the original RNGH
instability, which we attribute to saturable-absorption nonlinearity in the
laser. Coherent effects, which cannot be reproduced by standard laser rate
equations, can play therefore a key role in the multimode dynamics of QCLs, and
in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure
Noise induced oscillations in non-equilibrium steady state systems
We consider effect of stochastic sources upon self-organization process being
initiated with creation of the limit cycle. General expressions obtained are
applied to the stochastic Lorenz system to show that departure from equilibrium
steady state can destroy the limit cycle at certain relation between
characteristic scales of temporal variation of principle variables. Noise
induced resonance related to the limit cycle is found to appear if the fastest
variations displays a principle variable, which is coupled with two different
degrees of freedom or more.Comment: 11 pages, 4 figures. Submitted to Physica Script
Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators
We investigated the effect of time delays on phase configurations in a set of
two-dimensional coupled phase oscillators. Each oscillator is allowed to
interact with its neighbors located within a finite radius, which serves as a
control parameter in this study. It is found that distance-dependent
time-delays induce various patterns including traveling rolls, square-like and
rhombus-like patterns, spirals, and targets. We analyzed the stability
boundaries of the emerging patterns and briefly pointed out the possible
empirical implications of such time-delayed patterns.Comment: 5 Figure
Strong exciton-plasmon coupling in semiconducting carbon nanotubes
We study theoretically the interactions of excitonic states with surface
electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled
carbon nanotubes. We show that these interactions can result in strong
exciton-surface-plasmon coupling. The exciton absorption line shape exhibits
Rabi splitting ~0.1 eV as the exciton energy is tuned to the nearest interband
surface plasmon resonance of the nanotube. We also show that the quantum
confined Stark effect may be used as a tool to control the exciton binding
energy and the nanotube band gap in carbon nanotubes in order, e.g., to bring
the exciton total energy in resonance with the nearest interband plasmon mode.
The exciton-plasmon Rabi splitting we predict here for an individual carbon
nanotube is close in its magnitude to that previously reported for hybrid
plasmonic nanostructures artificially fabricated of organic semiconductors on
metallic films. We expect this effect to open up paths to new tunable
optoelectronic device applications of semiconducting carbon nanotubes.Comment: 22 pages, 8 figures, accepted for PR
Thermodynamic Field Theory with the Iso-Entropic Formalism
A new formulation of the thermodynamic field theory (TFT) is presented. In
this new version, one of the basic restriction in the old theory, namely a
closed-form solution for the thermodynamic field strength, has been removed. In
addition, the general covariance principle is replaced by Prigogine's
thermodynamic covariance principle (TCP). The introduction of TCP required the
application of an appropriate mathematical formalism, which has been referred
to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine
Universal Criterion of Evolution, via geometrical arguments, is proven. A new
set of thermodynamic field equations, able to determine the nonlinear
corrections to the linear ("Onsager") transport coefficients, is also derived.
The geometry of the thermodynamic space is non-Riemannian tending to be
Riemannian for hight values of the entropy production. In this limit, we obtain
again the same thermodynamic field equations found by the old theory.
Applications of the theory, such as transport in magnetically confined plasmas,
materials submitted to temperature and electric potential gradients or to
unimolecular triangular chemical reactions can be found at references cited
herein.Comment: 35 page
Multifractal analysis of stress time series during ultrathin lubricant film melting
Melting of an ultrathin lubricant film confined between two atomically flat
surfaces is we studied using the rheological model for viscoelastic matter
approximation. Phase diagram with domains, corresponding to sliding, dry, and
two types of friction regimes has been built taking into account
additive noises of stress, strain, and temperature of the lubricant. The stress
time series have been obtained for all regimes of friction using the
Stratonovich interpretation. It has been shown that self-similar regime of
lubricant melting is observed when intensity of temperature noise is much
larger than intensities of strain and stress noises. This regime is defined by
homogenous distribution, at which characteristic stress scale is absent. We
study stress time series obtained for all friction regimes using multifractal
detrended fluctuation analysis. It has been shown that multifractality of these
series is caused by different correlations that are present in the system and
also by a power-law distribution. Since the power-law distribution is related
to small stresses, this case corresponds to self-similar solid-like lubricant.Comment: 22 pages, 10 figures, 41 reference
High temperature phase transition in the coupled atom-light system in the presence of optical collisions
The problem of photonic phase transition for the system of a two-level atomic
ensemble interacting with a quantized single-mode electromagnetic field in the
presence of optical collisions (OC) is considered. We have shown that for large
and negative atom-field detuning a photonic field exhibits high temperature
second order phase transition to superradiant state under thermalization
condition for coupled atom-light states. Such a transition can be connected
with superfluid (coherent) properties of photon-like low branch (LB)
polaritons. We discuss the application of metallic cylindrical waveguide for
observing predicted effects.Comment: 8 pages, 2 figure
Comparison of Theory and Experiment for a One-Atom Laser in a Regime of Strong Coupling
Our recent paper reports the experimental realization of a one-atom laser in
a regime of strong coupling (Ref. [1]). Here we provide the supporting
theoretical analysis relevant to the operating regime of our experiment. By way
of a simplified four-state model, we investigate the passage from the domain of
conventional laser theory into the regime of strong coupling for a single
intracavity atom pumped by coherent external fields. The four-state model is
also employed to exhibit the vacuum-Rabi splitting and to calculate the optical
spectrum. We next extend this model to incorporate the relevant Zeeman
hyperfine states as well as a simple description of the pumping processes in
the presence of polarization gradients and atomic motion. This extended model
is employed to make quantitative comparisons with the measurements of Ref. [1]
for the intracavity photon number versus pump strength and for the photon
statistics as expressed by the intensity correlation function g2(tau).Comment: 19 pages, 14 figures. Added sections on: scaling properties,
vacum-Rabi splitting, and optical spectru
- …