5,045 research outputs found
The First Supernovae: Source Density And Observability Of Pair Instability Supernovae
Theoretical models predict that some of the first stars ended their lives as extremely energetic Pair Instability Supernovae (PISNe). With energies approaching 10(53) erg, these supernovae are expected to be within the detection limits of the upcoming James Webb Space Telescope (JWST) allowing observational constraints to be placed on the properties of the first stars. We estimate the source density of PISNe using a semi-analytic Press-Schecter based approach informed by cosmological simulations, with an upper limit of similar to 0.2 PISNe visible per JWST field of view at any given time. We find that the main obstacle to observing PISNe is their scarcity rather than their faintness. Given this we suggest a mosaic style search strategy for detecting PISNe from the first stars.Astronom
Two Poems
Poems include: If You and I Said Fuck It, and Bought the Ranch in Montana and Yesterday’s Bestiary for Tomorrow
Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis
Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporally, data were corrected for the effect of season before large-scale spatial comparisons were made. The highest concentration of Fe was noted in the North Sea and of Mn in the Baltic. Increased tissue concentrations of Pb were recorded in the mussels from the Bay of Biscay and the Baltic Sea. Low concentrations of metals were determined in the mussels from the Mediterranean Sea and the Northern Baltic. Relatively low geographic variations of Cu and Zn indicate that mussels are able to partially regulate accumulated body concentrations, which means Cu and Zn are, to some extent, independent of environmental concentrations
The Source Density And Observability Of Pair-Instability Supernovae From The First Stars
Theoretical models predict that some of the first stars ended their lives as extremely energetic pair-instability supernovae (PISNe). With energies approaching 10(53) erg, these supernovae are expected to be within the detection limits of the upcoming James Webb Space Telescope (JWST), allowing observational constraints to be placed on the properties of the first stars. We estimate the source density of PISNe using a semi-analytic halo mass function based approach, accounting for the effects of feedback from star formation on the PISN rate using cosmological simulations. We estimate an upper limit of similar to 0.2 PISNe per JWST field of view at any given time. Feedback can reduce this rate significantly, e. g., lowering it to as little as one PISN per 4000 JWST fields of view for the most pessimistic explosion models. We also find that the main obstacle to observing PISNe from the first stars is their scarcity, not their faintness; exposures longer than a few times 10(4) s will do little to increase the number of PISNe found. Given this, we suggest a mosaic style search strategy for detecting PISNe from the first stars. Even rather high-redshift PISNe are unlikely to be missed by moderate exposures, and a large number of pointings will be required to ensure a detection.NSF AST-0708795, AST-1009928NASA ATFP NNX09AJ33GAstronom
A 3D radiative transfer framework: I. non-local operator splitting and continuum scattering problems
We describe a highly flexible framework to solve 3D radiation transfer
problems in scattering dominated environments based on a long characteristics
piece-wise parabolic formal solution and an operator splitting method. We find
that the linear systems are efficiently solved with iterative solvers such as
Gauss-Seidel and Jordan techniques. We use a sphere-in-a-box test model to
compare the 3D results to 1D solutions in order to assess the accuracy of the
method. We have implemented the method for static media, however, it can be
used to solve problems in the Eulerian-frame for media with low velocity
fields.Comment: A&A, in press. 14 pages, 19 figures. Full resolution figures
available at ftp://phoenix.hs.uni-hamburg.de/preprints/3DRT_paper1.pdf HTML
version (low res figures) at
http://hobbes.hs.uni-hamburg.de/~yeti/PAPERS/3drt_paper1/index.htm
Invoice from E. & H. Hummel & Co. to Robert Goelet
https://digitalcommons.salve.edu/goelet-personal-expenses/1285/thumbnail.jp
Echoes of the Past: The Effect of Background Experience on Far Transfer
Far transfer is the application of knowledge learned in one setting to a problem in a very different setting. This multi-method study looked at far transfer in humans and whether it could be facilitated, inhibited, or remain unaffected by the number of courses or years a student at a university spent learning about the subject matter of the knowledge being transferred. Through quantitative and qualitative analysis of pretest and post-test data from an introductory undergraduate earth science course, I found that students with more physical science background experience more frequently engaged in successful and accurate transfer of physics information to novel questions relating to plate tectonics. I also found evidence that a high amount of previous physical science experience seemed to promote transfer later in the earth science course. However, due to the sample size of the analyzed student responses, I believe that my results are preliminary and I encourage more research to be done on the topic with larger sample sizes
- …