5,632 research outputs found

    Comparison of satellite theories

    Get PDF
    The accuracy of five mathematical models in computing a nominal orbit for the Vanguard 2 satellite by using a position velocity vector is considered. Either numerical integration or analytical theories are used in all models as well as the same force model that corresponds to a potential with the zonal harmonics to order four. The amounts of spread in the values of the total energy and the z-component of the angular momentum for a set of times are considered as measures of accuracy

    NVU dynamics. III. Simulating molecules at constant potential energy

    Get PDF
    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [Ingebrigtsen et al., J. Chem. Phys. 135, 104101 (2011); ibid, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnstrom OTP, and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nose-Hoover NVT dynamics. Since Nose-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems.Comment: 14 pages, 12 figure

    Model for Dissipative Highly Nonlinear Waves in Dry Granular Systems

    Full text link
    A model is presented for the characterization of dissipative effects on highly nonlinear waves in one-dimensional dry granular media. The model includes three terms: Hertzian, viscoelastic, and a term proportional to the square of the relative velocity of particles. The model outcomes are confronted with different experiments where the granular system is subject to several constraints for different materials. Excellent qualitative and quantitative agreement between theory and experiments is found.Comment: Link to the Journal: http://prl.aps.org/abstract/PRL/v104/i11/e11800

    A computer program version of the Brouwer orbital theory with optional modifications

    Get PDF
    Computer program for calculating osculating values of Keplerian elements of satellite orbi

    Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses

    Full text link
    We show that a linear molecule subjected to a short specific elliptically polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two different axes. The conditions ensuring an optimal field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure

    Noisy regression and classification with continuous multilayer networks

    Full text link
    We investigate zero temperature Gibbs learning for two classes of unrealizable rules which play an important role in practical applications of multilayer neural networks with differentiable activation functions: classification problems and noisy regression problems. Considering one step of replica symmetry breaking, we surprisingly find that for sufficiently large training sets the stable state is replica symmetric even though the target rule is unrealizable. Further, the classification problem is shown to be formally equivalent to the noisy regression problem.Comment: 7 pages, including 2 figure

    Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers

    Get PDF
    Pulsed lasers are used for simultaneous single-beam three-dimensional optical trapping of and second-harmonic generation in 50--100-nm nonlinear particles. The emission power of the frequency-doubled light, the trapping stability, and the particle degradation are investigated for KTP and LiNbO3 particles trapped by 25-kHz-repetition-rate Q-switched Nd:YAG and 76-MHz mode-locked Ti:sapphire l a s e r s . Typically 1 pW-10 nW of frequency-doubled light is detected from stably trapped particles. The particles may be used as probes for nonintrusively scanned near-field optical microscopy

    Soliton-dynamical approach to a noisy Ginzburg-Landau model

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy Ginzburg-Landau equation based on a canonical phase space formulation. The transition pathways are characterized by nucleation and subsequent propagation of domain walls or solitons. We also evaluate the Arrhenius factor in terms of an associated action and find good agreement with recent numerical optimization studies.Comment: 4 pages (revtex4), 3 figures (eps
    corecore