90 research outputs found

    Could continuous cover forestry be an economically and environmentally feasible management option on drained boreal peatlands?

    Get PDF
    Environmental and economic performance of forestry on drained peatlands was reviewed to consider whether continuous cover forestry (CCF) could be a feasible alternative to even-aged management (EM). CCF was regarded feasible particularly because continuously maintaining a tree stand with significant transpiration and interception capacity would decrease the need for ditch network maintenance. Managing CCF forests in such a way that the ground water levels are lower than in clear-cut EM forests but higher than in mature EM forests could decrease greenhouse gas emissions and negative water quality impacts caused both by anoxic redox reactions and oxidation and mineralization of deep peat layers. Regeneration studies indicated potential for satisfactory natural regeneration under CCF on drained peatlands. An economic advantage in CCF over EM is that fewer investments are needed to establish the forest stand and sustain its growth. Thus, even if the growth of trees in CCF forests were lower than in EM forests, CCF could at least in some peatland sites turn out to be a more profitable forest management regime. An advantage of CCF from the viewpoint of socially optimal forest management is that it plausibly reduces the negative externalities of management compared to EM. We propose that future research in drained peatland forests should focus on assessing the economic and environmental feasibility of CCF.Peer reviewe

    Ex-post Performance Implications of Divergence of Managers’ Perceptions of ‘Distance’ From ‘Reality’ in International Business

    Get PDF
    Despite much research on “distance”, little attention has been paid to the effect of divergence of managers’ perceptions of distance from reality (i.e. distance divergence) and its implications for firm performance. This knowledge is highly important since managerial perceptions of the firm’s environment do not always coincide with the actual environmental characteristics. Consequently, strategies based on inaccurate data may result in erroneous forecasts, missed opportunities and business failure. Using survey data from senior managers of Swedish exporters and corresponding objective data, this study is a first attempt to explore the ex-post performance implications of “distance divergence” when expanding into foreign markets. Our results demonstrate that the larger the divergence between managers’ perceptions of cultural distance and corresponding “objective” distance, the lower the performance expressed in companies’ sales. However, over/underestimation of cultural distance does not have differential effects on firm performance.“Stiftelsen Olle Hakelius Stipendiefond”, Grant no: 1165001

    Unsteady Flow Simulation and Erosion Assessment in a Ditch Network of a Drained Peatland Forest Catchment in Eastern Finland

    No full text
    We developed and applied a computational model for simulating unsteady flow in a drainage network of a boreal forested peatland site. The input to the model was the hourly runoff produced by a hydrological model. The simulations of the flow in the ditch network were performed using an iterative procedure for solving the Saint-Venant equations that govern the flow in each of the network channels. These equations were solved separately for each ditch branch, and the flow depths at the junctions were corrected using the method of characteristics. The model was applied to the drainage network of a peatland catchment in Eastern Finland over a period of 15 months. Because flow resistance in the ditches depended strongly on flow conditions, flow resistance (Manning’s n) was introduced as a function of discharge. The model was calibrated and validated against field data and the simulation results were further applied to assess erosion risk. The highest risk of erosion occurred during long lasting flows induced by snowmelt at ditch sections with a steep slope and a large upstream area. These model results can aid in the design and siting of water protection measures within the drained area

    Distributed hydrological modeling with channel network flow of a forestry drained peatland site

    No full text
    Peatland drainage has been an important component of forestry management in the boreal zone and the resulting ditch networks are maintained regularly to sustain forest productivity. In Finland, this is recognized as the most detrimental forestry practice increasing diffuse loads of suspended solids. Alongside forestry management on peatlands, interest in peatland restoration has grown lately. Distributed hydrological modeling has the potential to address these matters by recognizing relevant physical mechanisms and identifying most suitable strategies for mitigating undesired outcomes. This study investigates the utility of such a modeling approach in a drained peatland forest environment. To provide a suitable tool for this purpose, we coupled channel network flow to the three-dimensional distributed hydrological model FLUSH. The resulting model was applied to a 5.2 ha drained peatland forest catchment in Eastern Finland. The model was calibrated and validated using field measurements obtained over frost-free periods of five months. The application showed that distributed modeling can disentangle the importance of spatial factors on local soil moisture conditions, which is significant as peatland drainage aims to control these conditions. In our application, we limited the spatial aspect to the topography and the drainage network, and found that the drainage configuration had a clear effect on the spatial soil moisture patterns but that the effect was less pronounced during the wetter summer. Future applications of distributed modeling in this field comprises investigating the impacts of other spatial factors, modeling channel erosion and solid transport to address strategies for their mitigation, and evaluating restoration schemes
    • 

    corecore