147 research outputs found
Determination of two-body potentials from n-body spectra
We show how the two-body potential may be uniquely determined from n-body
spectra where the hypercentral approximation is valid. We illustrate this by
considering an harmonic oscillator potential which has been altered by changing
the energy or normalisation constant of the ground state of the n-body system
and finding how this modifies the two-body potential. It is shown that with
increasing number of particles the spectrum must be known more precisely to
obtain the two-body potential to the same degree of accuracy.Comment: 13 pages of text (LATEX), 3 figures (not included, available from
authors), NIKHEF-93-P
Local and non-local equivalent potentials for p-12C scattering
A Newton-Sabatier fixed energy inversion scheme has been used to equate
inherently non-local p-C potentials at a variety of energies to pion
threshold, with exactly phase equivalent local ones. Those energy dependent
local potentials then have been recast in the form of non-local Frahn-Lemmer
interactions.Comment: 15 pages plus 9 figures submitted to Phys. Rev.
Complete determination of the reflection coefficient in neutron specular reflection by absorptive non-magnetic media
An experimental method is proposed which allows the complete determination of
the complex reflection coefficient for absorptive media for positive and
negative values of the momenta. It makes use of magnetic reference layers and
is a modification of a recently proposed technique for phase determination
based on polarization measurements. The complex reflection coefficient
resulting from a simulated application of the method is used for a
reconstruction of the scattering density profiles of absorptive non-magnetic
media by inversion.Comment: 14 pages, 4 figures, reformulation of abstract, ref.12 added,
typographical correction
Model Calculations for the Two-Fragment Electro-Disintegration of He
Differential cross sections for the electro-disintegration process are calculated, using a model in which
the final state interaction is included by means of a nucleon-nucleus (3+1)
potential constructed via Marchenko inversion. The required bound-state wave
functions are calculated within the integrodifferential equation approach
(IDEA). In our model the important condition that the initial bound state and
the final scattering state are orthogonal is fulfilled. The sensitivity of the
cross section to the input interaction in certain kinematical regions
is investigated. The approach adopted could be useful in reactions involving
few cluster systems where effective interactions are not well known and exact
methods are presently unavailable. Although, our Plane-Wave Impulse
Approximation results exhibit, similarly to other calculations, a dip in the
five-fold differential cross-section around a missing momentum of , it is argued that this is an artifact of the omission of re-scattering
four-nucleon processes.Comment: 16 pages, 6 figures, accepted for publication by Phys.Rev.
Multi-channel phase-equivalent transformation and supersymmetry
Phase-equivalent transformation of local interaction is generalized to the
multi-channel case. Generally, the transformation does not change the number of
the bound states in the system and their energies. However, with a special
choice of the parameters, the transformation removes one of the bound states
and is equivalent to the multi-channel supersymmetry transformation recently
suggested by Sparenberg and Baye. Using the transformation, it is also possible
to add a bound state to the discrete spectrum of the system at a given energy
if the angular momentum at least in one of the coupled channels .Comment: 9 pages, revtex; to be published in Phys. At. Nucl. (Oct. 2000
Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions
We investigate the role of relativistic and nonrelativistic optical
potentials used in the analysis of () data. We find that the
relativistic calculations produce smaller () cross sections even in the
case in which both relativistic and nonrelativistic optical potentials fit
equally well the elastic proton--nucleus scattering data. Compared to the
nonrelativistic impulse approximation, this effect is due to a depletion in the
nuclear interior of the relativistic nucleon current, which should be taken
into account in the nonrelativistic treatment by a proper redefinition of the
effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the
list of references updated. Added one appendix. This version will appear in
Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version
of the file and figures available at
http://www.nikhefk.nikhef.nl/projects/Theory/preprints
Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator
Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator
with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic
clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au),
divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to
theoretical predictions of jellium models, Woods-Saxon and wine bottle
potentials, and to the classification scheme using the 3n+l pseudo quantum
number. In alkali metal clusters and noble metal clusters the 3-dimensional
q-deformed harmonic oscillator correctly predicts all experimentally observed
magic numbers up to 1500 (which is the expected limit of validity for theories
based on the filling of electronic shells), while in addition it gives
satisfactory results for the magic numbers of clusters of divalent metals and
trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of
the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic
oscillator, is a good candidate for being the symmetry of systems of several
metal clusters. The Taylor expansions of angular momentum dependent potentials
approximately producing the same spectrum as the 3-dimensional q-deformed
harmonic oscillator are found to be similar to the Taylor expansions of the
symmetrized Woods-Saxon and wine-bottle symmetrized Woods-Saxon potentials,
which are known to provide successful fits of the Ekardt potentials.Comment: 23 pages including 7 table
- …
