740 research outputs found

    Uniaxial and biaxial soft deformations of nematic elastomers

    Full text link
    We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this non-classical elasticity and how the invariance under rotations of the reference and target states gives soft elasticity (the Golubovic and Lubensky theorem). The role of rotations makes the Polar Decomposition Theorem vital for decomposing general deformations into body rotations and symmetric strains. The role of the square roots of tensors is discussed in this context and that of finding explicit forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe

    Direct observation of t2g orbital ordering in magnetite

    Full text link
    Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation.Comment: to appear in Phys. Rev. Let

    Phase Diagram of Spinless Fermions on an Anisotropic Triangular Lattice at Half-filling

    Full text link
    The strong coupling phase diagram of the spinless fermions on the anisotropic triangular lattice at half-filling is presented. The geometry of inter-site Coulomb interactions rules the phase diagram. Unconventional charge ordered phases are detected which are the recently reported pinball liquid and the striped chains. Both are induced by the quantum dynamics out of classical disordered states and afford extremely correlated metallic states and the particular domain wall-type of excitations, respectively. The disorder once killed by the quantum effect revives at the finite temperature, which is discussed in the terms of the organic θ\theta-ET2X_2X.Comment: 4pages 6figure

    High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition

    Full text link
    We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction

    Abrupt grain boundary melting in ice

    Full text link
    The effect of impurities on the grain boundary melting of ice is investigated through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we include retarded potential effects in a calculation of the full frequency dependent van der Waals and Coulombic interactions within a grain boundary. At high dopant concentrations the classical solutal effect dominates the melting behavior. However, depending on the amount of impurity and the surface charge density, as temperature decreases, the attractive tail of the dispersion force interaction begins to compete effectively with the repulsive screened Coulomb interaction. This leads to a film-thickness/temperature curve that changes depending on the relative strengths of these interactions and exhibits a decrease in the film thickness with increasing impurity level. More striking is the fact that at very large film thicknesses, the repulsive Coulomb interaction can be effectively screened leading to an abrupt reduction to zero film thickness.Comment: 8 pages, 1 figur

    Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge

    Get PDF
    The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms

    Polymer Induced Bundling of F-actin and the Depletion Force

    Full text link
    The inert polymer polyethylene glycol (PEG) induces a "bundling" phenomenon in F-actin solutions when its concentration exceeds a critical onset value C_o. Over a limited range of PEG molecular weight and ionic strength, C_o can be expressed as a function of these two variables. The process is reversible, but hysteresis is also observed in the dissolution of the bundles, with ionic strength having a large influence. Additional actin filaments are able to join previously formed bundles. Little, if any, polymer is associated with the bundle structure. Continuum estimates of the Asakura-Oosawa depletion force, Coulomb repulsion, and van der Waals potential are combined for a partial explanation of the bundling effect and hysteresis. Conjectures are presented concerning the apparent limit in bundle size

    Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions are commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing solution of the nonlinear PB equation, the cell model neglects microion-induced correlations between macroions, precluding modeling of macroion ordering phenomena. An alternative approach, avoiding artificial constraints of cell geometry, maps a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interactions. In practice, effective-interaction models are usually based on linear screening approximations, which can accurately describe nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions of nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modeling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate in predicting osmotic pressures of deionized suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions grows, leading predictions of the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed Matter on "Classical density functional theory methods in soft and hard matter

    Theory of orientational ordering in colloidal molecular crystals

    Full text link
    Freezing of charged colloids on square or triangular two-dimensional periodic substrates has been recently shown to realize a rich variety of orientational orders. We propose a theoretical framework to analyze the corresponding structures. A fundamental ingredient is that a non spherical charged object in an electrolyte creates a screened electrostatic potential that is anisotropic at any distance. Our approach is in excellent agreement with the known experimental and numerical results, and explains in simple terms the reentrant orientational melting observed in these so called colloidal molecular crystals. We also investigate the case of a rectangular periodic substrate and predict an unusual phase transition between orientationnaly ordered states, as the aspect ratio of the unit cell is changed.Comment: 4 pages, to appear in Phys. Rev. Let
    corecore