143 research outputs found

    Cluster formations in deformed states for 28^{28}Si and 32^{32}S

    Full text link
    We study cluster formation in strongly deformed states for 28^{28}Si and 32^{32}S using a macroscopic-microscopic model. The study is based on calculated total-energy surfaces, which are the sums of deformation-dependent macroscopic-microscopic potential-energy surfaces and rotational-energy contributions. We analyze the angular-momentum-dependent total-energy surfaces and identify the normal- and super-deformed states in 28^{28}Si and 32^{32}S, respectively. We show that at sufficiently high angular momenta strongly deformed minima appear. The corresponding microscopic density distributions show cluster structure that closely resemble the 16^{16}O+12^{12}C and 16^{16}O+16^{16}O configurations. At still higher deformations, beyond the minima, valleys develop in the calculated surfaces. These valleys lead to mass divisions that correspond to the target-projectile configurations for which molecular resonance states have been observed. We discuss the relation between the one-body deformed minima and the two-body molecular-resonance states.Comment: 6 pages, 7 figure

    Structure of Excited States of 10Be studied with Antisymmetrized Molecular Dynamics

    Get PDF
    We study structure of excited states of 10Be with the method of variation after spin parity projection in the framework of antisymmetrized molecular dynamics. Present calculations describe many excited states and reproduce the experimental data of E2 and E1 transitions and the new data of the ÎČ\beta transition strength successfully. We make systematic discussions on the molecule-like structures of light unstable nuclei and the important role of the valence neutrons based on the results obtained with the framework which is free from such model assumptions as the existence of inert cores and clusters.Comment: 15 pages, RevTex, seven postscript figures (using epsf.sty

    Cluster structure in stable and unstable nuclei

    Full text link
    Cluster structure in stable and unstable nuclei has been studied. We report recent developments of theoretical studies on cluster aspect, which is essential for structure study of light unstable nuclei. We discuss negative parity bands in even-even Be and Ne isotopes and show the importance of cluster aspect. Three-body cluster structure and cluster crystallization are also introduced. It was found that the coexistence of cluster and mean-field aspect brings a variety of structures to unstable nuclei.Comment: 6 pages, 3 figures, submitted to Euro. Phys. J.

    Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics

    Get PDF
    The structures of the ground and excited states of Be-11 were studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical results reproduce the abnormal parity of the ground state and predict various kinds of excited states. We suggest a new negative-parity band with a well-developed clustering structure which reaches high-spin states. Focusing on a 2α2\alpha clustering structure, we investigated structure of the ground and excited states. We point out that molecular orbits play important roles for the intruder ground state and the low-lying 2ℏω2\hbar \omega states. The features of the breaking of α\alpha clusters were also studied with the help of data for Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.

    New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations

    Full text link
    We propose new effective inter-nucleon forces with a finite-range three-body operator. The proposed forces are suitable for describing the nuclear structure properties over a wide mass number region, including the saturation point of nuclear matter. The forces are applied to microscopic calculations of Z=NZ=N (A≀40A\le 40) nuclei and O isotopes with a method of antisymmetrized molecular dynamics. We present the characteristics of the forces and discuss the importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.

    Alpha-cluster structure and density wave in oblate nuclei

    Full text link
    Pentagon and triangle shapes in Si-28 and C-12 are discussed in relation with nuclear density wave. In the antisymmetrized molecular dynamics calculations, the Kπ=5−K^\pi=5^- band in Si-28 and the Kπ=3−K^\pi=3^- band in C-12 are described by the pentagon and triangle shapes, respectively. These negative-parity bands can be interpreted as the parity partners of the Kπ=0+K^\pi=0^+ ground bands and they are constructed from the parity-asymmetric-intrinsic states. The pentagon and the triangle shapes originate in 7alpha and 3alpha cluster structures, respectively. In a mean-field picture, they are described also by the static one-dimensional density wave at the edge of the oblate states. In analysis with ideal alpha cluster models using Brink-Bloch cluster wave functions and that with a simplified model, we show that the static edge density wave for the pentagon and triangle shapes can be understood by spontaneous breaking of axial symmetry, i.e., the instability of the oblate states with respect to the edge density wave. The density wave is enhanced in the Z=N nuclei due to the proton-neutron coherent density waves, while it is suppressed in Z\ne N nuclei.Comment: 23 pages, 8 figure

    Hadron-hadron interaction from SU(2) lattice QCD

    Full text link
    We evaluate interhadron interactions in two-color lattice QCD from Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are performed in quenched SU(2) QCD with the plaquette gauge action at ÎČ=2.45\beta = 2.45 and the Wilson quark action. We concentrate on S-wave scattering states of two scalar diquarks. Evaluating different flavor combinations with various quark masses, we try to find out the ingredients in hadronic interactions. Between two scalar diquarks (uCÎł5du C\gamma_5 d, the lightest baryon in SU(2) system), we observe repulsion in short-range region, even though present quark masses are not very light. We define and evaluate the "quark-exchange part" in the interaction, which is induced by adding quark-exchange diagrams, or equivalently, by introducing Pauli blocking among some of quarks. The repulsive force in short-distance region arises only from the "quark-exchange part", and disappears when quark-exchange diagrams are omitted. We find that the strength of repulsion grows in light quark-mass regime and its quark-mass dependence is similar to or slightly stronger than that of the color-magnetic interaction by one-gluon-exchange (OGE) processes. It is qualitatively consistent with the constituent-quark model picture that a color-magnetic interaction among quarks is the origin of repulsion. We also find a universal long-range attractive force, which enters in any flavor channels of two scalar diquarks and whose interaction range and strength are quark-mass independent. The weak quark-mass dependence of interaction ranges in each component implies that meson-exchange contributions are small and subdominant, and the other contributions, {\it ex.} flavor exchange processes, color-Coulomb or color-magnetic interactions, are considered to be predominant, in the quark-mass range we evaluated.Comment: 14 pages, 20 figure

    Triaxial deformation in 10Be

    Get PDF
    The triaxial deformation in 10^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model. The states of two valence neutrons are classified based on the molecular-orbit (MO) model, and the π\pi-orbit is introduced about the axis connecting the two α\alpha-clusters for the description of the rotational bands. There appear two rotational bands comprised mainly of Kπ=0+K^\pi = 0^+ and Kπ=2+K^\pi = 2^+, respectively, at low excitation energy, where the two valence neutrons occupy Kπ=3/2−K^\pi = 3/2^- or Kπ=1/2−K^\pi = 1/2^- orbits. The triaxiality and the KK-mixing are discussed in connection to the molecular structure, particularly, to the spin-orbit splitting. The extent of the triaxial deformation is evaluated in terms of the electro-magnetic transition matrix elements (Davydov-Filippov model, Q-invariant model), and density distribution in the intrinsic frame. The obtained values turned out to be Îł=15o∌20o\gamma = 15^o \sim 20^o.Comment: 15 pages, latex, 3 figure

    Exotic clusters in the excited states of Be-12, Be-14 and B-15

    Full text link
    The excited states of Be-12, Be-14 and B-15 were studied by an antisymmetrized molecular dynamics method. The theoretical results reproduced the energy levels of recently measured excited states of Be-12, and also predicted rotational bands with innovative clustering structures in Be-12, Be-14 and B-15. Clustering states with new exotic clusters (He-6, He-8 and Li-9) were theoretically suggested. One new aspect in very neutron-rich nuclei is a 6-nucleon correlation among 4 neutrons and 2 protons, which plays an important role in the formation of He-6 clusters during clustering: 8He + 6He of Be-14 and 9Li+6He of B-15.Comment: 8 pages, 3 figures. submitted to Phys.Rev.

    Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes

    Get PDF
    The structure of the second 0^+ state of ^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model based on the molecular-orbit (MO) model. The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is shown to have a particularly enlarged α−α\alpha-\alpha structure. The kinetic energy of the two valence neutrons occupying along the α−α\alpha-\alpha axis is reduced remarkably due to the strong α\alpha clustering and, simultaneously, the spin-orbit interaction unexpectedly plays important role to make the energy of this state much lower. The mixing of states with different spin structure is shown to be important in negative-parity states. The experimentally observed small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence of this spin-mixing effect. ^{12}{Be} is also investigated using α+α+4n\alpha+\alpha+4n model, in which four valence neutrons are considered to occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is shown to exhibit similar characteristics, that the remarkable α\alpha clustering and the contribution of the spin-orbit interaction make the binding of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
    • 

    corecore