143 research outputs found
Cluster formations in deformed states for Si and S
We study cluster formation in strongly deformed states for Si and
S using a macroscopic-microscopic model. The study is based on
calculated total-energy surfaces, which are the sums of deformation-dependent
macroscopic-microscopic potential-energy surfaces and rotational-energy
contributions. We analyze the angular-momentum-dependent total-energy surfaces
and identify the normal- and super-deformed states in Si and S,
respectively. We show that at sufficiently high angular momenta strongly
deformed minima appear. The corresponding microscopic density distributions
show cluster structure that closely resemble the O+C and
O+O configurations. At still higher deformations, beyond the
minima, valleys develop in the calculated surfaces. These valleys lead to mass
divisions that correspond to the target-projectile configurations for which
molecular resonance states have been observed. We discuss the relation between
the one-body deformed minima and the two-body molecular-resonance states.Comment: 6 pages, 7 figure
Structure of Excited States of 10Be studied with Antisymmetrized Molecular Dynamics
We study structure of excited states of 10Be with the method of variation
after spin parity projection in the framework of antisymmetrized molecular
dynamics. Present calculations describe many excited states and reproduce the
experimental data of E2 and E1 transitions and the new data of the
transition strength successfully. We make systematic discussions on the
molecule-like structures of light unstable nuclei and the important role of the
valence neutrons based on the results obtained with the framework which is free
from such model assumptions as the existence of inert cores and clusters.Comment: 15 pages, RevTex, seven postscript figures (using epsf.sty
Cluster structure in stable and unstable nuclei
Cluster structure in stable and unstable nuclei has been studied. We report
recent developments of theoretical studies on cluster aspect, which is
essential for structure study of light unstable nuclei. We discuss negative
parity bands in even-even Be and Ne isotopes and show the importance of cluster
aspect. Three-body cluster structure and cluster crystallization are also
introduced. It was found that the coexistence of cluster and mean-field aspect
brings a variety of structures to unstable nuclei.Comment: 6 pages, 3 figures, submitted to Euro. Phys. J.
Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics
The structures of the ground and excited states of Be-11 were studied with a
microscopic method of antisymmetrized molecular dynamics. The theoretical
results reproduce the abnormal parity of the ground state and predict various
kinds of excited states. We suggest a new negative-parity band with a
well-developed clustering structure which reaches high-spin states. Focusing on
a clustering structure, we investigated structure of the ground and
excited states. We point out that molecular orbits play important roles for the
intruder ground state and the low-lying states. The features of
the breaking of clusters were also studied with the help of data for
Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.
New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations
We propose new effective inter-nucleon forces with a finite-range three-body
operator. The proposed forces are suitable for describing the nuclear structure
properties over a wide mass number region, including the saturation point of
nuclear matter. The forces are applied to microscopic calculations of
() nuclei and O isotopes with a method of antisymmetrized molecular
dynamics. We present the characteristics of the forces and discuss the
importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.
Alpha-cluster structure and density wave in oblate nuclei
Pentagon and triangle shapes in Si-28 and C-12 are discussed in relation with
nuclear density wave. In the antisymmetrized molecular dynamics calculations,
the band in Si-28 and the band in C-12 are described by
the pentagon and triangle shapes, respectively. These negative-parity bands can
be interpreted as the parity partners of the ground bands and they
are constructed from the parity-asymmetric-intrinsic states. The pentagon and
the triangle shapes originate in 7alpha and 3alpha cluster structures,
respectively. In a mean-field picture, they are described also by the static
one-dimensional density wave at the edge of the oblate states. In analysis with
ideal alpha cluster models using Brink-Bloch cluster wave functions and that
with a simplified model, we show that the static edge density wave for the
pentagon and triangle shapes can be understood by spontaneous breaking of axial
symmetry, i.e., the instability of the oblate states with respect to the edge
density wave. The density wave is enhanced in the Z=N nuclei due to the
proton-neutron coherent density waves, while it is suppressed in Z\ne N nuclei.Comment: 23 pages, 8 figure
Hadron-hadron interaction from SU(2) lattice QCD
We evaluate interhadron interactions in two-color lattice QCD from
Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are
performed in quenched SU(2) QCD with the plaquette gauge action at and the Wilson quark action. We concentrate on S-wave scattering states
of two scalar diquarks. Evaluating different flavor combinations with various
quark masses, we try to find out the ingredients in hadronic interactions.
Between two scalar diquarks (, the lightest baryon in SU(2)
system), we observe repulsion in short-range region, even though present quark
masses are not very light. We define and evaluate the "quark-exchange part" in
the interaction, which is induced by adding quark-exchange diagrams, or
equivalently, by introducing Pauli blocking among some of quarks. The repulsive
force in short-distance region arises only from the "quark-exchange part", and
disappears when quark-exchange diagrams are omitted. We find that the strength
of repulsion grows in light quark-mass regime and its quark-mass dependence is
similar to or slightly stronger than that of the color-magnetic interaction by
one-gluon-exchange (OGE) processes. It is qualitatively consistent with the
constituent-quark model picture that a color-magnetic interaction among quarks
is the origin of repulsion. We also find a universal long-range attractive
force, which enters in any flavor channels of two scalar diquarks and whose
interaction range and strength are quark-mass independent. The weak quark-mass
dependence of interaction ranges in each component implies that meson-exchange
contributions are small and subdominant, and the other contributions, {\it ex.}
flavor exchange processes, color-Coulomb or color-magnetic interactions, are
considered to be predominant, in the quark-mass range we evaluated.Comment: 14 pages, 20 figure
Triaxial deformation in 10Be
The triaxial deformation in Be is investigated using a microscopic
model. The states of two valence neutrons are classified
based on the molecular-orbit (MO) model, and the -orbit is introduced
about the axis connecting the two -clusters for the description of the
rotational bands. There appear two rotational bands comprised mainly of and , respectively, at low excitation energy, where the two
valence neutrons occupy or orbits. The
triaxiality and the -mixing are discussed in connection to the molecular
structure, particularly, to the spin-orbit splitting. The extent of the
triaxial deformation is evaluated in terms of the electro-magnetic transition
matrix elements (Davydov-Filippov model, Q-invariant model), and density
distribution in the intrinsic frame. The obtained values turned out to be
.Comment: 15 pages, latex, 3 figure
Exotic clusters in the excited states of Be-12, Be-14 and B-15
The excited states of Be-12, Be-14 and B-15 were studied by an
antisymmetrized molecular dynamics method. The theoretical results reproduced
the energy levels of recently measured excited states of Be-12, and also
predicted rotational bands with innovative clustering structures in Be-12,
Be-14 and B-15. Clustering states with new exotic clusters (He-6, He-8 and
Li-9) were theoretically suggested. One new aspect in very neutron-rich nuclei
is a 6-nucleon correlation among 4 neutrons and 2 protons, which plays an
important role in the formation of He-6 clusters during clustering: 8He + 6He
of Be-14 and 9Li+6He of B-15.Comment: 8 pages, 3 figures. submitted to Phys.Rev.
Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes
The structure of the second 0^+ state of ^{10}Be is investigated using a
microscopic model based on the molecular-orbit (MO) model.
The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is
shown to have a particularly enlarged structure. The kinetic
energy of the two valence neutrons occupying along the axis is
reduced remarkably due to the strong clustering and, simultaneously,
the spin-orbit interaction unexpectedly plays important role to make the energy
of this state much lower. The mixing of states with different spin structure is
shown to be important in negative-parity states. The experimentally observed
small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence
of this spin-mixing effect. ^{12}{Be} is also investigated using
model, in which four valence neutrons are considered to
occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is
shown to exhibit similar characteristics, that the remarkable
clustering and the contribution of the spin-orbit interaction make the binding
of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in
comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
- âŠ