4,261 research outputs found

    Effect of atomic beam alignment on photon correlation measurements in cavity QED

    Full text link
    Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-wave cavity are carried out. The delayed photon coincident rate for forwards scattering is computed and compared with the measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)] and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that a moderate atomic beam misalignment can account for the degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a single adjustable parameter--the atomic beam tilt from perpendicular to the cavity axis. Departures of the measurement conditions from the weak-field limit are discussed.Comment: 15 pages and 13 figure

    Entangled and disentangled evolution for a single atom in a driven cavity

    Full text link
    For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally-entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement

    Delayed feedback control in quantum transport

    Full text link
    Feedback control in quantum transport has been predicted to give rise to several interesting effects, amongst them quantum state stabilisation and the realisation of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system be affected instantaneously after the measurement of electronic jumps through it. In this contribution I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state-stabilisation and Maxwell's-daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.Comment: 13 pages, 5 figure

    Quantum feedback cooling of a single trapped ion in front of a mirror

    Full text link
    We develop a theory of quantum feedback cooling of a single ion trapped in front of a mirror. By monitoring the motional sidebands of the light emitted into the mirror mode we infer the position of the ion, and act back with an appropriate force to cool the ion. We derive a feedback master equation along the lines of the quantum feedback theory developed by Wiseman and Milburn, which provides us with cooling times and final temperatures as a function of feedback gain and various system parameters.Comment: 15 pages, 11 Figure

    Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime

    Full text link
    We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of 2020 K in the strong coupling regime.Comment: To appear in PR

    Dramatic impact of pumping mechanism on photon entanglement in microcavity

    Full text link
    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.Comment: 6 pages, 3 figure

    Cooperative quantum jumps for three dipole-interacting atoms

    Full text link
    We investigate the effect of the dipole-dipole interaction on the quantum jump statistics of three atoms. This is done for three-level systems in a V configuration and in what may be called a D configuration. The transition rates between the four different intensity periods are calculated in closed form. Cooperative effects are shown to increase by a factor of 2 compared to two of either three-level systems. This results in transition rates that are, for distances of about one wavelength of the strong transition, up to 100% higher than for independent systems. In addition the double and triple jump rates are calculated from the transition rates. In this case cooperative effects of up to 170% for distances of about one wavelength and still up to 15% around 10 wavelengths are found. Nevertheless, for the parameters of an experiment with Hg+ ions the effects are negligible, in agreement with the experimental data. For three Ba+ ions this seems to indicate that the large cooperative effects observed experimentally cannot be explained by the dipole-dipole interaction.Comment: 9 pages, 9 figures. Revised version, to be published in PR

    Quantum estimation of a damping constant

    Get PDF
    We discuss an interferometric approach to the estimation of quantum mechanical damping. We study specific classes of entangled and separable probe states consisting of superpositions of coherent states. Based on the assumption of limited quantum resources we show that entanglement improves the estimation of an unknown damping constant.Comment: 7 pages, 5 figure

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Initial state preparation with dynamically generated system-environment correlations

    Full text link
    The dependence of the dynamics of open quantum systems upon initial correlations between the system and environment is an utterly important yet poorly understood subject. For technical convenience most prior studies assume factorizable initial states where the system and its environments are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the system is brought in contact with its environments. The ultimate cause of this is an initial imbalance between system-environment correlations and coupling. In this note we demonstrate explicitly how to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for setups of both theoretical and experimental interest. We provide simple analytical results in terms of quantities that appear in linear (as opposed to affine) master equations derived for factorized initial states.Comment: 6 pages, 2 figure
    • …
    corecore