47,872 research outputs found

    Dynamical matrix of two-dimensional electron crystals

    Full text link
    In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to get the dynamical matrix of these crystals from a calculation of the density response function performed in the Generalized Random Phase Approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11 postscripts figure

    Predicted efficiency of Si wire array solar cells

    Get PDF
    Solar cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost alternatives to conventional wafer-based Si photovoltaics [1-6], and single-wire solar cells have been reported with efficiencies of up to 3.4% [7]. We recently presented device physics simulations which predicted efficiencies exceeding 17%, based on experimentally observed diffusion lengths within our wires [8]. However, this model did not take into account the optical properties of a wire array device - in particular the inherently low packing fraction of wires within CVD-grown wire arrays, which might limit their ability to fully absorb incident sunlight. For this reason, we have combined a device physics model of Si wire solar cells with FDTD simulations of light absorption within wire arrays to investigate the potential photovoltaic efficiency of this cell geometry. We have found that even a sparsely packed array (14%) is expected to absorb moderate (66%) amounts of above-bandgap solar energy, yielding a simulated photovoltaic efficiency of 14.5%. Because the wire array comprises such a small volume of Si, the observed absorption represents an effective optical concentration, which enables greater operating voltages than previously predicted for Si wire array solar cells

    Viking orbiter stereo imaging catalog

    Get PDF
    The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set

    Ermakov-Lewis angles for one-parameter supersymmetric families of Newtonian free damping modes

    Get PDF
    We apply the Ermakov-Lewis procedure to the one-parameter damped modes \tilde{y} recently introduced by Rosu and Reyes, which are related to the common Newtonian free damping modes y by the general Riccati solution [H.C. Rosu and M. Reyes, Phys. Rev. E 57, 4850 (1998), physics/9707019]. In particular, we calculate and plot the angle quantities of this approach that can help to distinguish these modes from the common y modesComment: 6 pages, twocolumn, 18 figs embedded, only first 9 publishe

    Microwave resonance of the reentrant insulating quantum Hall phases in the 1st excited Landau Level

    Full text link
    We present measurements of the real diagonal microwave conductivity of the reentrant insulating quantum Hall phases in the first excited Landau level at temperatures below 50 mK. A resonance is detected around filling factor ν=2.58\nu=2.58 and weaker frequency dependence is seen at ν=2.42\nu=2.42 and 2.28. These measurements are consistent with the formation of a bubble phase crystal centered around these ν\nu at very low temperatures

    Consistent Quantum Counterfactuals

    Get PDF
    An analysis using classical stochastic processes is used to construct a consistent system of quantum counterfactual reasoning. When applied to a counterfactual version of Hardy's paradox, it shows that the probabilistic character of quantum reasoning together with the ``one framework'' rule prevents a logical contradiction, and there is no evidence for any mysterious nonlocal influences. Counterfactual reasoning can support a realistic interpretation of standard quantum theory (measurements reveal what is actually there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8 pages, 2 figure
    • …
    corecore