370 research outputs found

    On the steady states of the spherically symmetric Einstein-Vlasov system

    Full text link
    Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality sup⁥r>02m(r)/r<8/9\sup_{r > 0} 2 m(r)/r < 8/9, m(r)m(r) the quasi-local mass, holds for all such steady states--both isotropic {\em and} anisotropic--, and we give numerical evidence and a partial proof for the conjecture that for any given microscopic equation of state--both isotropic {\em and} anisotropic--the resulting one-parameter family of static solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe

    Sharp bounds on 2m/r for static spherical objects

    Full text link
    Sharp bounds are obtained, under a variety of assumptions on the eigenvalues of the Einstein tensor, for the ratio of the Hawking mass to the areal radius in static, spherically symmetric space-times.Comment: We changed a footnote in which an earlier result of H\aa{}kan Andr\'{e}asson was not described correctl

    Black hole formation from a complete regular past for collisionless matter

    Full text link
    Initial data for the spherically symmetric Einstein-Vlasov system is constructed whose past evolution is regular and whose future evolution contains a black hole. This is the first example of initial data with these properties for the Einstein-matter system with a "realistic" matter model. One consequence of the result is that there exists a class of initial data for which the ratio of the Hawking mass \open{m}=\open{m}(r) and the area radius rr is arbitrarily small everywhere, such that a black hole forms in the evolution. This result is in a sense analogous to the result for a scalar field. Another consequence is that there exist black hole initial data such that the solutions exist for all Schwarzschild time t∈(−∞,∞)t\in (-\infty,\infty).Comment: 30 pages. Revised version to appear in Annales Henri Poincar\'

    Regularity results for the spherically symmetric Einstein-Vlasov system

    Full text link
    The spherically symmetric Einstein-Vlasov system is considered in Schwarzschild coordinates and in maximal-isotropic coordinates. An open problem is the issue of global existence for initial data without size restrictions. The main purpose of the present work is to propose a method of approach for general initial data, which improves the regularity of the terms that need to be estimated compared to previous methods. We prove that global existence holds outside the centre in both these coordinate systems. In the Schwarzschild case we improve the bound on the momentum support obtained in \cite{RRS} for compact initial data. The improvement implies that we can admit non-compact data with both ingoing and outgoing matter. This extends one of the results in \cite{AR1}. In particular our method avoids the difficult task of treating the pointwise matter terms. Furthermore, we show that singularities never form in Schwarzschild time for ingoing matter as long as 3m≀r.3m\leq r. This removes an additional assumption made in \cite{A1}. Our result in maximal-isotropic coordinates is analogous to the result in \cite{R1}, but our method is different and it improves the regularity of the terms that need to be estimated for proving global existence in general.Comment: 25 pages. To appear in Ann. Henri Poincar\'

    Sharp bounds on the critical stability radius for relativistic charged spheres

    Full text link
    In a recent paper by Giuliani and Rothman \cite{GR}, the problem of finding a lower bound on the radius RR of a charged sphere with mass M and charge Q<M is addressed. Such a bound is referred to as the critical stability radius. Equivalently, it can be formulated as the problem of finding an upper bound on M for given radius and charge. This problem has resulted in a number of papers in recent years but neither a transparent nor a general inequality similar to the case without charge, i.e., M\leq 4R/9, has been found. In this paper we derive the surprisingly transparent inequality M≀R3+R9+Q23R.\sqrt{M}\leq\frac{\sqrt{R}}{3}+\sqrt{\frac{R}{9}+\frac{Q^2}{3R}}. The inequality is shown to hold for any solution which satisfies p+2pT≀ρ,p+2p_T\leq\rho, where p≄0p\geq 0 and pTp_T are the radial- and tangential pressures respectively and ρ≄0\rho\geq 0 is the energy density. In addition we show that the inequality is sharp, in particular we show that sharpness is attained by infinitely thin shell solutions.Comment: 20 pages, 1 figur

    The formation of black holes in spherically symmetric gravitational collapse

    Full text link
    We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system. We find explicit conditions on the initial data, with ADM mass M, such that the resulting spacetime has the following properties: there is a family of radially outgoing null geodesics where the area radius r along each geodesic is bounded by 2M, the timelike lines r=c∈[0,2M]r=c\in [0,2M] are incomplete, and for r>2M the metric converges asymptotically to the Schwarzschild metric with mass M. The initial data that we construct guarantee the formation of a black hole in the evolution. We also give examples of such initial data with the additional property that the solutions exist for all r≄0r\geq 0 and all Schwarzschild time, i.e., we obtain global existence in Schwarzschild coordinates in situations where the initial data are not small. Some of our results are also established for the Einstein equations coupled to a general matter model characterized by conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild coordinates for data which are not small is added together with minor modification

    A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein-Vlasov system

    Full text link
    The stability features of steady states of the spherically symmetric Einstein-Vlasov system are investigated numerically. We find support for the conjecture by Zeldovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.Comment: 29 pages, 10 figure

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system

    Full text link
    We consider the spherically symmetric, asymptotically flat, non-vacuum Einstein equations, using as matter model a collisionless gas as described by the Vlasov equation. We find explicit conditions on the initial data which guarantee the formation of a trapped surface in the evolution which in particular implies that weak cosmic censorship holds for these data. We also analyze the evolution of solutions after a trapped surface has formed and we show that the event horizon is future complete. Furthermore we find that the apparent horizon and the event horizon do not coincide. This behavior is analogous to what is found in certain Vaidya spacetimes. The analysis is carried out in Eddington-Finkelstein coordinates.Comment: 2

    Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant

    Full text link
    The behaviour of expanding cosmological models with collisionless matter and a positive cosmological constant is analysed. It is shown that under the assumption of plane or hyperbolic symmetry the area radius goes to infinity, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the cosmic no hair theorem in this class of spacetimes
    • 

    corecore