110 research outputs found

    The photometric evolution of dissolving star clusters: II. Realistic models. Colours and M/L ratios

    Full text link
    Evolutionary synthesis models are the prime method to construct models of stellar populations, and to derive physical parameters from observations. One of the assumptions for such models so far has been the time-independence of the stellar mass function. However, dynamical simulations of star clusters in tidal fields have shown the mass function to change due to the preferential removal of low-mass stars from clusters. Here we combine the results from dynamical simulations of star clusters in tidal fields with our evolutionary synthesis code GALEV to extend the models by a new dimension: the total cluster disruption time. We reanalyse the mass function evolution found in N-body simulations of star clusters in tidal fields, parametrise it as a function of age and total cluster disruption time and use this parametrisation to compute GALEV models as a function of age, metallicity and the total cluster disruption time. We study the impact of cluster dissolution on the colour (generally, they become redder) and magnitude (they become fainter) evolution of star clusters, their mass-to-light ratios (off by a factor of ~2 -- 4 from standard predictions), and quantify the effect on the cluster age determination from integrated photometry (in most cases, clusters appear to be older than they are, between 20 and 200%). By comparing our model results with observed M/L ratios for old compact objects in the mass range 10^4.5 -- 10^8 Msun, we find a strong discrepancy for objects more massive than 10^7 Msun (higher M/L). This could be either caused by differences in the underlying stellar mass function or be an indication for the presence of dark matter in these objects. Less massive objects are well represented by the models. The models for a range of total cluster disruption times are available online. (shortened)Comment: MNRAS, in press, data are available at http://www.phys.uu.nl/~anders/data/SSP_varMF/, http://data.galev.org and soon also from CDS ... sorry for the sometimes strange layout, that's LaTe

    The Star Cluster Population of M51: II. Age distribution and relations among the derived parameters

    Full text link
    We use archival {\it Hubble Space Telescope} observations of broad-band images from the ultraviolet (F255W-filter) through the near infrared (NICMOS F160W-filter) to study the star cluster population of the interacting spiral galaxy M51. We obtain age, mass, extinction, and effective radius estimates for 1152 star clusters in a region of ∌7.3×8.1\sim 7.3 \times 8.1 kpc centered on the nucleus and extending into the outer spiral arms. In this paper we present the data set and exploit it to determine the age distribution and relationships among the fundamental parameters (i.e. age, mass, effective radius). Using this dataset we find: {\it i}) that the cluster formation rate seems to have had a large increase ∌\sim 50-70 Myr ago, which is coincident with the suggested {\it second passage} of its companion, NGC 5195, {\it ii}) a large number of extremely young (<< 10 Myr) star clusters, which we interpret as a population of unbound clusters of which a large majority will disrupt within the next ∌\sim10 Myr, and {\it iii)} that the distribution of cluster sizescan be well approximated by a power-law with exponent, −η=−2.2±0.2 -\eta = -2.2 \pm 0.2, which is very similar to that of Galactic globular clusters, indicating that cluster disruption is largely independent of cluster radius. In addition, we have used this dataset to search for correlations among the derived parameters. In particular, we do not find any strong trends between the age and mass, mass and effective radius, nor between the galactocentric distance and effective radius. There is, however, a strong correlation between the age of a cluster and its extinction, with younger clusters being more heavily reddened than older clusters.Comment: 21 pages, 20 figures, accepted A&

    Low energy onset of nuclear shadowing in photoabsorption

    Get PDF
    The early onset of nuclear shadowing in photoabsorption at low photon energies has recently been interpreted as a possible signature of a decrease of the rho meson mass in nuclei. We show that one can understand this early onset within simple Glauber theory if one takes the negative real part of the rho N scattering amplitudes into account, corresponding to a higher effective mass of the rho meson in nuclear medium.Comment: REVTEX, 9 pages, including 4 eps figure

    An analytical description of the disruption of star clusters in tidal fields with an application to Galactic open clusters

    Get PDF
    We present a simple analytical description of the disruption of star clusters in a tidal field, which agrees excellently with detailed N-body simulations. The analytic expression can be used to predict the mass and age histograms of surviving clusters for any cluster initial mass function and any cluster formation history. The method is applied to open clusters in the solar neighbourhood, based on the new cluster sample of Kharchenko et al. From a comparison between the observed and predicted age distributions in the age range between 10 Myr to 3 Gyr we find the following results: (1) The disruption time of a 10^4 M_sun cluster in the solar neighbourhood is about 1.3+/-0.5 Gyr. This is a factor 5 shorter than derived from N-body simulations of clusters in the tidal field of the galaxy. (2) The present starformation rate in bound clusters within 600 pc from the Sun is 5.9+/-0.8 * 10^2 M_sun / Myr, which corresponds to a surface star formation rate in bound clusters of 5.2+/-0.7 10^(-10) M_sun/yr/pc^2. (3) The age distribution of open clusters shows a bump between 0.26 and 0.6 Gyr when the cluster formation rate was 2.5 times higher than before and after. (4) The present star formation rate in bound clusters is half as small as that derived from the study of embedded clusters. The difference suggests that half of the clusters in the solar neighbourhood become unbound within 10 Myr. (5) The most massive clusters within 600 pc had an initial mass of 3*10^4 M_sun. This is in agreement with the statistically expected value based on a cluster initial mass function with a slope of -2, even if the physical upper mass limit is as high as 10^6 M_sun.Comment: 14 pages, 15 figures, to appear in Astronomy & Astrophysic

    The photometric evolution of dissolving star clusters I: First predictions

    Full text link
    We calculated the broad-band photometric evolution of unresolved star clusters, including the preferential loss of low-mass stars due to mass segregation. The stellar mass function of a cluster evolves due to three effects: (a) the evolution of massive stars; (b) early tidal effects reduce the mass function independently of the stellar mass; (c) after mass segregation has completed, tidal effects preferentially remove the lowest-mass stars from the cluster. Results: (1) During the first ~40% of the lifetime of a cluster the cluster simply gets fainter due to the loss of stars by tidal effects. (2) Between ~40 and ~80% of its lifetime the cluster gets bluer due to the loss of low-mass stars. This will result in an underestimate of the age of clusters if standard cluster evolution models are used (0.15 -- 0.5 dex). (3) After ~80% of the total lifetime of a cluster it will rapidly get redder. This is because stars at the low-mass end of the main sequence, which are preferentially lost, are bluer than the AGB stars that dominate the light at long wavelengths, resulting in an age overestimate. (4) Clusters with mass segregation and the preferential loss of low-mass stars evolve along almost the same tracks in colour-colour diagrams as clusters without mass segregation. Therefore it will be difficult to distinguish this effect from that due to the cluster age for unresolved clusters, unless the total lifetime of the clusters can be estimated. (5) The changes in the colour evolution of unresolved clusters due to the preferential loss of low-mass stars will affect the determination of the SFHs. (6) The preferential loss of low-mass stars might explain the presence of old (~13 Gyr) clusters in NGC 4365 which are photometrically disguised as intermediate-age clusters (2 - 5 Gyr). [Abridged]Comment: accepted for publication in A&

    The Star Cluster Population of M51: III. Cluster disruption and formation history

    Full text link
    In this work we concentrate on the evolution of the cluster population of the interacting galaxy M51 (NGC 5194), namely the timescale of cluster disruption and possible variations in the cluster formation rate. We present a method to compare observed age vs. mass number density diagrams with predicted populations including various physical input parameters like the cluster initial mass function, cluster disruption, cluster formation rate and star bursts. If we assume that the cluster formation rate increases at the moments of the encounters with NGC 5195, we find an increase in the cluster formation rate of a factor of 3, combined with a disruption timescale which is slightly higher then when assuming a constant formation rate (t_4 = 200 Myr vs. 100 Myr). The measured cluster disruption time is a factor of 5 shorter than expected on theoretical grounds. This implies that the disk of M51 is not a preferred location for survival of young globular clusters, since even clusters with masses of the order of 10^6 M_sun will be destroyed within a few Gyr.Comment: 13 pages, A&A, accepte

    Clusters in the solar neighbourhood: how are they destroyed?

    Get PDF
    We predict the survival time of initially bound star clusters in the solar neighbourhood taking into account: (1) stellar evolution, (2) tidal stripping, (3) shocking by spiral arms and (4) encounters with giant molecular clouds. We find that the predicted dissolution time is t_dis= 1.7 (M_i/10^4 M_sun)^0.67 Gyr for clusters in the mass range of 10^2 < M_i < 10^5 M_sun, where M_i is the initial mass of the cluster.. The resulting predicted shape of the logarithmic age distribution agrees very well with the empirical one, derived from a complete sample of clusters in the solar neighbourhood within 600 pc. The required scaling factor implies a star formation rate of 400 M_sun/Myr within 600 pc from the Sun or a surface formation rate of 3.5 10^-10 M_sun/(yr pc^2) for stars in bound clusters with an initial mass in the range of 10^2 to 3 10^4 M_sun.Comment: Accepted for A&A Letters, 5 pages, 3 figure

    Star cluster formation and star formation: the role of environment and star-formation efficiencies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe

    Tidal dwarf galaxies as a test of fundamental physics

    Full text link
    Within the cold dark matter (CDM) framework tidal dwarf galaxies (TDGs) cannot contain dark matter, so the recent results by Bournaud et al. (2007) that 3 rotating TDGs do show significant evidence for being dark matter dominated is inconsistent with the current concordance cosmological theory unless yet another dark matter component is postulated. We confirm that the TDG rotation curves are consistent with Newtonian dynamics only if either an additional dark matter component is postulated, or if all 3 TDGs happen to be viewed nearly edge-on, which is unlikely given the geometry of the tidal debris. We also find that the observed rotation curves are very naturally explained without any free parameters within the modified Newtonian dynamics (MOND) framework if inclinations are adopted as derived by Bournaud et al. We explore different inclination angles and two different assumptions about the external field effect. The results do not change significantly, and we conclude therefore that Newtonian dynamics has severe problems while MOND does exceedingly well in explaining the observed rotation curves of the 3 TDGs studied by Bournaud et al.Comment: Accepted for publication in A&A Letters, 5 pages, 3 figure

    Systematic uncertainties in the analysis of star cluster parameters based on broad-band imaging observations

    Get PDF
    High-resolution Hubble Space Telescope (HST) imaging observations of star cluster systems provide a very interesting and useful alternative to spectroscopic studies for stellar population analyses with 8-m class telescopes. Here, we assess the systematic uncertainties in (young) cluster age, mass and (to a lesser extent) extinction and metallicity determinations, based on broad-band imaging observations with the HST. Our aim here is to intercompare the results obtained using a variety of commonly used modelling techniques, specifically with respect to our own extensively tested multidimensional approach. Any significant differences among the resulting parameters are due to the details of the various, independently developed, modelling techniques used, rather than to the stellar population models themselves. Despite the model uncertainties and the selection effects inherent to most methods used, we find that the peaks in the relative age and mass distributions of a given young (â‰Č109 yr) cluster system can be derived relatively robustly and consistently, to accuracies of σt≡Δ〈log(age/yr)〉≀ 0.35 and σM≡Δ〈log(Mcl/M⊙)〉≀ 0.14, respectively, assuming Gaussian distributions in cluster ages and masses for reasons of simplicity. The peaks in the relative mass distributions can be obtained with a higher degree of confidence than those in the relative age distributions, as exemplified by the smaller spread among the peak values of the mass distributions derived. This implies that mass determinations are mostly insensitive to the approach adopted. We reiterate that as extensive a wavelength coverage as possible is required to obtain robust and internally consistent age and mass estimates for the individual objects, with reasonable uncertainties. Finally, we conclude that the actual filter systems used for the observations should be used for constructing model colours, instead of using conversion equations, to achieve more accurate derivations of ages and masse
    • 

    corecore