1,479 research outputs found
HI observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7
We present HI observations of the Sculptor Group starburst spiral galaxy NGC
253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for
the SKA precursor MeerKAT, under construction. The short baselines and low
system temperature of the telescope make it very sensitive to large scale, low
surface brightness emission. The KAT-7 observations detected 33% more flux than
previous VLA observations, mainly in the outer parts and in the halo for a
total HI mass of M. HI can be found at
large distances perpendicular to the plane out to projected distances of ~9-10
kpc away from the nucleus and ~13-14 kpc at the edge of the disk. A novel
technique, based on interactive profile fitting, was used to separate the main
disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the
HI disk confirms that it is declining in the outer parts, as seen in previous
optical Fabry-Perot measurements. As for the anomalous component, its RC has a
very shallow gradient in the inner parts and turns over at the same radius as
the disk, kinematically lagging by ~100 km/sec. The kinematics of the observed
extra planar gas is compatible with an outflow due to the central starburst and
galactic fountains in the outer parts. However, the gas kinematics shows no
evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the
star formation rate (SFR) is compatible with the starburst nature of NGC 253.Comment: 18 pages, 20 figures, 8 Tables. Accepted for publication to MNRA
Transformed Dissipation in Superconducting Quantum Circuits
Superconducting quantum circuits must be designed carefully to avoid
dissipation from coupling to external control circuitry. Here we introduce the
concept of current transformation to quantify coupling to the environment. We
test this theory with an experimentally-determined impedance transformation of
and find quantitative agreement better than a factor of 2 between
this transformation and the reduced lifetime of a phase qubit coupled to a
tunable transformer. Higher-order corrections from quantum fluctuations are
also calculated with this theory, but found not to limit the qubit lifetime. We
also illustrate how this simple connection between current and impedance
transformation can be used to rule out dissipation sources in experimental
qubit systems.Comment: 4 pages, 4 figure
Beyond the switch: explicit and implicit interaction with light
The commercial introduction of connected lighting that can be integrated with sensors and other devices is opening up new possibilities in creating responsive and intelligent environments. The role of lighting in such systems goes beyond simply functional illumination. In part due to the large and established lighting network, and with the advent of the LED, new types of lighting output are now possible. However, the current approach for controlling such systems is to simply replace the light switch with a somewhat more sophisticated smartphone-based remote control. The focus of this workshop is to explore new ways of interacting with light where lighting can not only be switched on or off, but is an intelligent system embedded in the environment capable of creating a variety of effects. The connectivity between multiple systems and other ecosystems, for example when transitioning from your home, to your car and to your office, will also be explored during this workshop as a part of a connected lifestyle between different contexts.
Keywords: connected lighting; lighting control; user experienc
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
Reduced phase error through optimized control of a superconducting qubit
Minimizing phase and other errors in experimental quantum gates allows higher
fidelity quantum processing. To quantify and correct for phase errors in
particular, we have developed a new experimental metrology --- amplified phase
error (APE) pulses --- that amplifies and helps identify phase errors in
general multi-level qubit architectures. In order to correct for both phase and
amplitude errors specific to virtual transitions and leakage outside of the
qubit manifold, we implement "half derivative" an experimental simplification
of derivative reduction by adiabatic gate (DRAG) control theory. The phase
errors are lowered by about a factor of five using this method to per gate, and can be tuned to zero. Leakage outside the qubit
manifold, to the qubit state, is also reduced to for
faster gates.Comment: 4 pages, 4 figures with 2 page supplementa
Computing prime factors with a Josephson phase qubit quantum processor
A quantum processor (QuP) can be used to exploit quantum mechanics to find
the prime factors of composite numbers[1]. Compiled versions of Shor's
algorithm have been demonstrated on ensemble quantum systems[2] and photonic
systems[3-5], however this has yet to be shown using solid state quantum bits
(qubits). Two advantages of superconducting qubit architectures are the use of
conventional microfabrication techniques, which allow straightforward scaling
to large numbers of qubits, and a toolkit of circuit elements that can be used
to engineer a variety of qubit types and interactions[6, 7]. Using a number of
recent qubit control and hardware advances [7-13], here we demonstrate a
nine-quantum-element solid-state QuP and show three experiments to highlight
its capabilities. We begin by characterizing the device with spectroscopy.
Next, we produces coherent interactions between five qubits and verify bi- and
tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In
the final experiment, we run a three-qubit compiled version of Shor's algorithm
to factor the number 15, and successfully find the prime factors 48% of the
time. Improvements in the superconducting qubit coherence times and more
complex circuits should provide the resources necessary to factor larger
composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure
Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures
The microwave performance of amorphous dielectric materials at very low
temperatures and very low excitation strengths displays significant excess
loss. Here, we present the loss tangents of some common amorphous and
crystalline dielectrics, measured at low temperatures (T < 100 mK) with near
single-photon excitation energies, using both coplanar waveguide (CPW) and
lumped LC resonators. The loss can be understood using a two-level state (TLS)
defect model. A circuit analysis of the half-wavelength resonators we used is
outlined, and the energy dissipation of such a resonator on a multilayered
dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
- …