1,657 research outputs found
Vortex trapping and expulsion in thin-film YBCO strips
A scanning SQUID microscope was used to image vortex trapping as a function
of the magnetic induction during cooling in thin-film YBCO strips for strip
widths W from 2 to 50 um. We found that vortices were excluded from the strips
when the induction Ba was below a critical induction Bc. We present a simple
model for the vortex exclusion process which takes into account the vortex -
antivortex pair production energy as well as the vortex Meissner and
self-energies. This model predicts that the real density n of trapped vortices
is given by n=(Ba-BK)/Phi0 with BK = 1.65Phi0/W^2 and Phi0 = h/2e the
superconducting flux quantum. This prediction is in good agreement with our
experiments on YBCO, as well as with previous experiments on thin-film strips
of niobium. We also report on the positions of the trapped vortices. We found
that at low densities the vortices were trapped in a single row near the
centers of the strips, with the relative intervortex spacing distribution width
decreasing as the vortex density increased, a sign of longitudinal ordering.
The critical induction for two rows forming in the 35 um wide strip was (2.89 +
1.91-0.93)Bc, consistent with a numerical prediction
Optimizing the Majorana character of SQUIDs with topologically non-trivial barriers
We have modeled SQUIDs with topologically non-trivial superconducting
junctions and performed an optimization study on the Majorana fermion
detection. We find that the SQUID parameters beta_L, and beta_C can be used to
increase the ratio of Majorana tunneling to standard Cooper pair tunneling by
more than two orders of magnitude. Most importantly, we show that dc SQUIDs
including topologically trivial components can still host strong signatures of
the Majorana fermion. This paves the way towards the experimental verification
of the theoretically predicted Majorana fermion.Comment: accepted by Physical Review
Resistivity due to low-symmetrical defects in metals
The impurity resistivity, also known as the residual resistivity, is
calculated ab initio using multiple-scattering theory. The mean-free path is
calculated by solving the Boltzmann equation iteratively. The resistivity due
to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for
the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f
noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev.
B, vol. 57 (1998), accepted for publicatio
Optics-less smart sensors and a possible mechanism of cutaneous vision in nature
Optics-less cutaneous (skin) vision is not rare among living organisms,
though its mechanisms and capabilities have not been thoroughly investigated.
This paper demonstrates, using methods from statistical parameter estimation
theory and numerical simulations, that an array of bare sensors with a natural
cosine-law angular sensitivity arranged on a flat or curved surface has the
ability to perform imaging tasks without any optics at all. The working
principle of this type of optics-less sensor and the model developed here for
determining sensor performance may be used to shed light upon possible
mechanisms and capabilities of cutaneous vision in nature
PySE: Software for Extracting Sources from Radio Images
PySE is a Python software package for finding and measuring sources in radio
telescope images. The software was designed to detect sources in the LOFAR
telescope images, but can be used with images from other radio telescopes as
well. We introduce the LOFAR Telescope, the context within which PySE was
developed, the design of PySE, and describe how it is used. Detailed
experiments on the validation and testing of PySE are then presented, along
with results of performance testing. We discuss some of the current issues with
the algorithms implemented in PySE and their inter- action with LOFAR images,
concluding with the current status of PySE and its future development.Comment: 26 pages, 6 figure
Theory for the electromigration wind force in dilute alloys
A multiple scattering formulation for the electromigration wind force on
atoms in dilute alloys is developed. The theory describes electromigration via
a vacancy mechanism. The method is used to calculate the wind valence for
electromigration in various host metals having a close-packed lattice
structure, namely aluminum, the noble metals copper, silver and gold and the
transition metals. The self-electromigration results for aluminum and the
noble metals compare well with experimental data. For the metals small
wind valences are found, which make these metals attractive candidates for the
experimental study of the direct valence.Comment: 18 pages LaTeX, epsfig, 8 figures. to appear in Phys. Rev. B 56 of
15/11/199
LION/web:a web-based ontology enrichment tool for lipidomic data analysis
Background: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. Results: We built a new lipid ontology (LION) that associates > 50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including "plasma membrane", "headgroup with negative charge", "glycerophosphoserines", "above average bilayer thickness", and "below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). Conclusions: The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.</p
Mitigating seafloor disturbance of bottom trawl fisheries for North Sea sole Solea solea by replacing mechanical with electrical stimulation
Funding: ADR, NTH, PM, HP, JJP, TvK: European Maritime and Fisheries Fund (EMFF) through the Netherlands Ministry of Agriculture Nature and Food Quality (LNV) (Grand/Award Number: 1300021172); NO ADR, JD, ORE, NTH, AI, FO, HP, JJP, TvK: FP 7 project BENTHIS (grant no. 312088); NO.Peer reviewedPublisher PD
Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy
© The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins
Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle
- …