98 research outputs found
Long distance quantum teleportation in a quantum relay configuration
A long distance quantum teleportation experiment with a fiber-delayed Bell
State Measurement (BSM) is reported. The source creating the qubits to be
teleported and the source creating the necessary entangled state are connected
to the beam splitter realizing the BSM by two 2 km long optical fibers. In
addition, the teleported qubits are analyzed after 2,2 km of optical fiber, in
another lab separated by 55 m. Time bin qubits carried by photons at 1310 nm
are teleported onto photons at 1550 nm. The fidelity is of 77%, above the
maximal value obtainable without entanglement. This is the first realization of
an elementary quantum relay over significant distances, which will allow an
increase in the range of quantum communication and quantum key distribution.Comment: 4 pages, submitte
Control of decoherence in the generation of photon pairs from atomic ensembles
We report an investigation to establish the physical mechanisms responsible
for decoherence in the generation of photon pairs from atomic ensembles, via
the protocol of Duan et. al for long distance quantum communication [Nature
(London) 414, 413 (2001)] and present the experimental techniques necessary to
properly control the process. We develop a theory to model in detail the
decoherence process in experiments with magneto-optical traps. The
inhomogeneous broadening of the ground state by the trap magnetic field is
identified as the principal mechanism for decoherence. In conjunction with our
theoretical analysis, we report a series of measurements to characterize and
control the coherence time in our experimental setup. We use copropagating
stimulated Raman spectroscopy to access directly the ground state energy
distribution of the ensemble. These spectroscopic measurements allow us to
switch off the trap magnetic field in a controlled way, optimizing the
repetition rate for single-photon measurements. With the magnetic field off, we
then measure nonclassical correlations for pairs of photons generated by the
ensemble as a function of the storage time of the single collective atomic
excitation. We report coherence times longer than 10 microseconds,
corresponding to an increase of two orders of magnitude compared to previous
results in cold ensembles. The coherence time is now two orders of magnitude
longer than the duration of the excitation pulses. The comparison between these
experimental results and the theory shows good agreement. Finally, we employ
our theory to devise ways to improve the experiment by optical pumping to
specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio
Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks
We demonstrate entanglement distribution between two remote quantum nodes
located 3 meters apart. This distribution involves the asynchronous preparation
of two pairs of atomic memories and the coherent mapping of stored atomic
states into light fields in an effective state of near maximum polarization
entanglement. Entanglement is verified by way of the measured violation of a
Bell inequality, and can be used for communication protocols such as quantum
cryptography. The demonstrated quantum nodes and channels can be used as
segments of a quantum repeater, providing an essential tool for robust
long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in
Appendix. Published online in Science Express, 5 April, 200
Direct measurement of decoherence for entanglement between a photon and stored atomic excitation
Violations of a Bell inequality are reported for an experiment where one of
two entangled qubits is stored in a collective atomic memory for a user-defined
time delay. The atomic qubit is found to preserve the violation of a Bell
inequality for storage times up to 21 microseconds, 700 times longer than the
duration of the excitation pulse that creates the entanglement. To address the
question of the security of entanglement-based cryptography implemented with
this system, an investigation of the Bell violation as a function of the
cross-correlation between the generated nonclassical fields is reported, with
saturation of the violation close to the maximum value allowed by quantum
mechanics.Comment: 4 pages, 3 figures. Minor changes. Published versio
PPLN Waveguide for Quantum Communication
We report on energy-time and time-bin entangled photon-pair sources based on
a periodically poled lithium niobate (PPLN) waveguide. Degenerate twin photons
at 1314 nm wavelength are created by spontaneous parametric down-conversion and
coupled into standard telecom fibers. Our PPLN waveguide features a very high
conversion efficiency of about 10^(-6), roughly 4 orders of magnitude more than
that obtained employing bulk crystals. Even if using low power laser diodes,
this engenders a significant probability for creating two pairs at a time - an
important advantage for some quantum communication protocols. We point out a
simple means to characterize the pair creation probability in case of a pulsed
pump. To investigate the quality of the entangled states, we perform
photon-pair interference experiments, leading to visibilities of 97% for the
case of energy-time entanglement and of 84% for the case of time-bin
entanglement. Although the last figure must still be improved, these tests
demonstrate the high potential of PPLN waveguide based sources to become a key
element for future quantum communication schemesComment: 11 pages, 9 figures, submitted to the European Physical Journal D
(special issue of the Quick conference
Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement
Any practical experiment utilising the innate D-dimensional entanglement of
the orbital angular momentum (OAM) state space of photons is subject to the
modal capacity of the detection system. We show that given such a constraint,
the number of measured, entangled OAM modes in photon pairs generated by
spontaneous parametric down-conversion (SPDC) can be maximised by tuning the
phase-matching conditions in the SPDC process. We demonstrate a factor of 2
increase on the half-width of the OAM-correlation spectrum, from 10 to 20, the
latter implying \approx 50 -dimensional two-photon OAM entanglement. Exploiting
correlations in the conjugate variable, angular position, we measure
concurrence values 0.96 and 0.90 for two phase-matching conditions, indicating
bipartite, D-dimensional entanglement where D is tuneable
Fiber transport of spatially entangled photons
Entanglement in the spatial degrees of freedom of photons is an interesting
resource for quantum information. For practical distribution of such entangled
photons it is desireable to use an optical fiber, which in this case has to
support multiple transverse modes. Here we report the use of a hollow-core
photonic crystal fiber to transport spatially entangled qubits.Comment: 4 pages, 4 figure
Quantum Networking with Atomic Ensembles in the Single Excitation Regime
Quantum networks hold the promise for revolutionary advances in information processing with entanglement distributed over remote locations via quantum repeaters. We report two milestones in this direction: the conditional control of memories and the implementation of functional nodes
Conditional control of the quantum states of remote atomic memories for quantum networking
Quantum networks hold the promise for revolutionary advances in information
processing with quantum resources distributed over remote locations via
quantum-repeater architectures. Quantum networks are composed of nodes for
storing and processing quantum states, and of channels for transmitting states
between them. The scalability of such networks relies critically on the ability
to perform conditional operations on states stored in separated quantum
memories. Here we report the first implementation of such conditional control
of two atomic memories, located in distinct apparatuses, which results in a
28-fold increase of the probability of simultaneously obtaining a pair of
single photons, relative to the case without conditional control. As a first
application, we demonstrate a high degree of indistinguishability for remotely
generated single photons by the observation of destructive interference of
their wavepackets. Our results demonstrate experimentally a basic principle for
enabling scalable quantum networks, with applications as well to linear optics
quantum computation.Comment: 10 pages, 8 figures; Minor corrections. References updated. Published
at Nature Physics 2, Advanced Online Publication of 10/29 (2006
- …