41,708 research outputs found
Tuning electronic structure of graphene via tailoring structure: theoretical study
Electronic structures of graphene sheet with different defective patterns are
investigated, based on the first principles calculations. We find that
defective patterns can tune the electronic structures of the graphene
significantly. Triangle patterns give rise to strongly localized states near
the Fermi level, and hexagonal patterns open up band gaps in the systems. In
addition, rectangular patterns, which feature networks of graphene nanoribbons
with either zigzag or armchair edges, exhibit semiconducting behaviors, where
the band gap has an evident dependence on the width of the nanoribbons. For the
networks of the graphene nanoribbons, some special channels for electronic
transport are predicted.Comment: 5 figures, 6 page
Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such
as total variation (TV) minimization, investigated in compressive sensing (CS)
claim potentially large reductions in sampling requirements. Quantifying this
claim for computed tomography (CT) is non-trivial, because both full sampling
in the discrete-to-discrete imaging model and the reduction in sampling
admitted by sparsity-exploiting methods are ill-defined. The present article
proposes definitions of full sampling by introducing four sufficient-sampling
conditions (SSCs). The SSCs are based on the condition number of the system
matrix of a linear imaging model and address invertibility and stability. In
the example application of breast CT, the SSCs are used as reference points of
full sampling for quantifying the undersampling admitted by reconstruction
through TV-minimization. In numerical simulations, factors affecting admissible
undersampling are studied. Differences between few-view and few-detector bin
reconstruction as well as a relation between object sparsity and admitted
undersampling are quantified.Comment: Revised version that was submitted to IEEE Transactions on Medical
Imaging on 8/16/201
Robust H∞ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise
The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O by Scanning Tunneling Spectroscopy
We report on the temperature dependence of the impurity-induced resonant
state in Zn-doped Bi_2Sr_2CaCu_2O by scanning tunneling
spectroscopy at 30 mK < T < 52 K. It is known that a Zn impurity induces a
sharp resonant peak in tunnel spectrum at an energy close to the Fermi level.
We observed that the resonant peak survives up to 52 K. The peak broadens with
increasing temperature, which is explained by the thermal effect. This result
provides information to understand the origin of the resonant peak.Comment: 4 pages, 3 figures, to appear in Phys. Rev.
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
Sublogarithmic deterministic selection on arrays with a reconfigurable optical bus
The linear array with a reconfigurable pipelined bus system (LARPBS) is a newly introduced parallel computational model, where processors are connected by a reconfigurable optical bus. In this paper, we show that the selection problem can be solved on the LARPBS model deterministically in O((loglogN)2/ log log log N) time. To our best knowledge, this is the best deterministic selection algorithm on any model with a reconfigurable optical bus.Yijie Han, Yi Pan and Hong She
Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta
We report a coherence-length scale phenomenon related to how the high-Tc
order parameter (OP) evolves under a directly-applied supercurrent. Scanning
tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta
thin-film strips at 4.2K. At current levels well below the theoretical
depairing limit, the low-energy Andreev states are suppressed by the
supercurrent, while the gap-like structures remain unchanged. We rule out the
likelihood of various extrinsic effects, and propose instead a model based on
phase fluctuations in the d-wave BTK formalism to explain the suppression. Our
results suggest that a supercurrent could weaken the local phase coherence
while preserving the pairing amplitude. Other possible scenarios which may
cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review
- …