36,934 research outputs found
Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect
Thermodynamics of lattice QCD with 2 sextet quarks on N_t=8 lattices
We continue our lattice simulations of QCD with 2 flavours of colour-sextet
quarks as a model for conformal or walking technicolor. A 2-loop perturbative
calculation of the -function which describes the evolution of this
theory's running coupling constant predicts that it has a second zero at a
finite coupling. This non-trivial zero would be an infrared stable fixed point,
in which case the theory with massless quarks would be a conformal field
theory. However, if the interaction between quarks and antiquarks becomes
strong enough that a chiral condensate forms before this IR fixed point is
reached, the theory is QCD-like with spontaneously broken chiral symmetry and
confinement. However, the presence of the nearby IR fixed point means that
there is a range of couplings for which the running coupling evolves very
slowly, i.e. it 'walks'. We are simulating the lattice version of this theory
with staggered quarks at finite temperature studying the changes in couplings
at the deconfinement and chiral-symmetry restoring transitions as the temporal
extent () of the lattice, measured in lattice units, is increased. Our
earlier results on lattices with show both transitions move to weaker
couplings as increases consistent with walking behaviour. In this paper
we extend these calculations to . Although both transition again move to
weaker couplings the change in the coupling at the chiral transition from
to is appreciably smaller than that from to .
This indicates that at we are seeing strong coupling effects and that
we will need results from to determine if the chiral-transition
coupling approaches zero as , as needed for the theory
to walk.Comment: 21 pages Latex(Revtex4) source with 4 postscript figures. v2: added 1
reference. V3: version accepted for publication, section 3 restructured and
interpretation clarified. Section 4 future plans for zero temperature
simulations clarifie
FAST TCP: Motivation, Architecture, Algorithms, Performance
We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness
Evidence for Antiferromagnetic Order in LaCeCuO from Angular Magnetoresistance Measurements
We investigated the in-plane angular magnetoresistivity (AMR) of -phase LaCeCuO (LCCO) thin films () fabricated by a pulsed laser deposition technique. The in-plane
AMR with shows a twofold symmetry instead of the
fourfold behavior found in other electron-doped cuprates such as PrCeCuO and NdCeCuO. The twofold AMR
disappears above a certain temperature, . The is well above
for ( K), and decreases with increasing doping,
until it is no longer observed above at . This twofold AMR
below is suggested to originate from an antiferromagnetic or spin
density wave order.Comment: to be published in Phys. Rev. B, Vol. 80 (2009
Two-dimensional Superconductivity from Dimerization of Atomically Ordered AuTe2Se4/3 Cubes
The emergent phenomena such as superconductivity and topological phase
transitions can be observed in strict two-dimensional crystalline matters.
Artificial interfaces and one atomic thickness layers are typical 2D materials
of this kind. Although having 2D characters, most bulky layered compounds,
however, do not possess these striking properties. Here, we report the 2D
superconductivity in bulky AuTe2Se4/3,where the reduction in dimensionality is
achieved through inducing the elongated covalent Te-Te bonds. The
atomic-resolution images reveal that the Au, Te and Se are atomically ordered
in a cube, among which are Te-Te bonds of 3.18 A and 3.28 A. The
superconductivity at 2.85 K is discovered, which is unraveled to be the
quasi-2D nature owing to the BKT topological transition. The nesting of nearly
parallel Fermi sheets could give rise to strong electron-phonon coupling. It is
proposed to further depleting the thickness could result in more
topologically-related phenomena.Comment: 16 pages, 5 figures,To be published in Nature Communication
- …