3,180 research outputs found
Gypsy moth defoliation assessment: Forest defoliation in detectable from satellite imagery
The author has identified the following significant results. ERTS-1 imagery obtained over eastern Pennsylvania during July 1973, indicates that forest defoliation is detectable from satellite imagery and correlates well with aerial visual survey data. It now appears that two damage classes (heavy and moderate-light) and areas of no visible defoliation can be detected and mapped from properly prepared false composite imagery. In areas where maple is the dominant species or in areas of small woodlots interspersed with agricultural areas, detection and subsequent mapping is more difficult
Influence of modal loss on the quantum state generation via cross-Kerr nonlinearity
In this work we investigate an influence of decoherence effects on quantum
states generated as a result of the cross-Kerr nonlinear interaction between
two modes. For Markovian losses (both photon loss and dephasing), a region of
parameters when losses still do not lead to destruction of non-classicality is
identified. We emphasize the difference in impact of losses in the process of
state generation as opposed to those occurring in propagation channel. We show
moreover, that correlated losses in modern realizations of schemes of large
cross-Kerr nonlinearity might lead to enhancement of non-classicality.Comment: To appear in PR
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Cluster state preparation using gates operating at arbitrary success probabilities
Several physical architectures allow for measurement-based quantum computing
using sequential preparation of cluster states by means of probabilistic
quantum gates. In such an approach, the order in which partial resources are
combined to form the final cluster state turns out to be crucially important.
We determine the influence of this classical decision process on the expected
size of the final cluster. Extending earlier work, we consider different
quantum gates operating at various probabilites of success. For finite
resources, we employ a computer algebra system to obtain the provably optimal
classical control strategy and derive symbolic results for the expected final
size of the cluster. We identify two regimes: When the success probability of
the elementary gates is high, the influence of the classical control strategy
is found to be negligible. In that case, other figures of merit become more
relevant. In contrast, for small probabilities of success, the choice of an
appropriate strategy is crucial.Comment: 7 pages, 9 figures, contribution to special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing". Replaced with published
versio
- …