116,667 research outputs found
The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension
We discuss the Casimir effect for massless scalar fields subject to the
Dirichlet boundary conditions on the parallel plates at finite temperature in
the presence of one fractal extra compactified dimension. We obtain the Casimir
energy density with the help of the regularization of multiple zeta function
with one arbitrary exponent and further the renormalized Casimir energy density
involving the thermal corrections. It is found that when the temperature is
sufficiently high, the sign of the Casimir energy remains negative no matter
how great the scale dimension is within its allowed region. We derive
and calculate the Casimir force between the parallel plates affected by the
fractal additional compactified dimension and surrounding temperature. The
stronger thermal influence leads the force to be stronger. The nature of the
Casimir force keeps attractive.Comment: 14 pages, 2 figure
A similarity law for stressing rapidly heated thin-walled cylinders
When a thin cylindrical shell of uniform thickness is very rapidly heated by hot high-pressure gas flowing inside the shell, the temperature of material decreases steeply from a high temperature at the inside surface to ambient temperatures at the outside surface. Young's modulus of material thus varies. The purpose of the present paper is to reduce the problem of stress analysis of such a cylinder to an equivalent problem in conventional cylindrical shell without temperature gradient in the wall. The equivalence concept is expressed as a series of relations between the quantities for the hot cylinder and the quantities for the cold cylinder. These relations give the similarity law whereby strains for the hot cylinder can be simply deduced from measured strains on the cold cylinder and thus greatly simplify the problem of experimental stress analysis
On the Casimir effect for parallel plates in the spacetime with one extra compactified dimension
In this paper, the Casimir effect for parallel plates in the presence of one
compactified universal extra dimension is reexamined in detail. Having
regularized the expressions of Casimir force, we show that the nature of
Casimir force is repulsive if the distance between the plates is large enough,
which is disagree with the experimental phenomena.Comment: 7 pages, 3 figure
Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement System for Real Time Applications
This paper presents the development of a new algorithm for Gaussian based
color image enhancement system. The algorithm has been designed into
architecture suitable for FPGA/ASIC implementation. The color image enhancement
is achieved by first convolving an original image with a Gaussian kernel since
Gaussian distribution is a point spread function which smoothen the image.
Further, logarithm-domain processing and gain/offset corrections are employed
in order to enhance and translate pixels into the display range of 0 to 255.
The proposed algorithm not only provides better dynamic range compression and
color rendition effect but also achieves color constancy in an image. The
design exploits high degrees of pipelining and parallel processing to achieve
real time performance. The design has been realized by RTL compliant Verilog
coding and fits into a single FPGA with a gate count utilization of 321,804.
The proposed method is implemented using Xilinx Virtex-II Pro XC2VP40-7FF1148
FPGA device and is capable of processing high resolution color motion pictures
of sizes of up to 1600x1200 pixels at the real time video rate of 116 frames
per second. This shows that the proposed design would work for not only still
images but also for high resolution video sequences.Comment: 15 pages, 15 figure
Final stare interaction enhancement effect on the near threshold p\bar p system in B^\pm\to p\bar p \p^\pm decay
We discuss the low-mass enhancement effect in the baryon-antibaryon invariant
mass in three-body baryonic B decays using final state interactions in the
framework of Regge theory. We show that the rescattering between baryonic pair
can reproduce the observed mass spectrum.Comment: 7 pages, 11 figure
Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions
We report on a theoretical study of the electronic interface reconstruction
(EIR) induced by polarity discontinuity at a heterojunction between a polar and
a nonpolar Mott insulators, and of the two-dimensional strongly-correlated
electron systems (2DSCESs) which accompany the reconstruction. We derive an
expression for the minimum number of polar layers required to drive the EIR,
and discuss key parameters of the heterojunction system which control 2DSCES
properties. The role of strong correlations in enhancing confinement at the
interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte
Collective Quartics and Dangerous Singlets in Little Higgs
Any extension of the standard model that aims to describe TeV-scale physics
without fine-tuning must have a radiatively-stable Higgs potential. In little
Higgs theories, radiative stability is achieved through so-called collective
symmetry breaking. In this letter, we focus on the necessary conditions for a
little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet
models, a collective quartic requires an electroweak triplet scalar. In
two-Higgs doublet models, a collective quartic requires a triplet or singlet
scalar. As a corollary of this study, we show that some little Higgs theories
have dangerous singlets, a pathology where collective symmetry breaking does
not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear
in JHE
Nonperturbative Determination of Heavy Meson Bound States
In this paper we obtain a heavy meson bound state equation from the heavy
quark equation of motion in heavy quark effective theory (HQET) and the heavy
meson effective field theory we developed very recently. The bound state
equation is a covariant extention of the light-front bound state equation for
heavy mesons derived from light-front QCD and HQET. We determine the covariant
heavy meson wave function variationally by minimizing the binding energy
. Subsequently the other basic HQET parameters and
, and the heavy quark masses and can also be
consistently determined.Comment: 15 pages, 1 figur
Design optimization of the JPL Phase B testbed
Increasingly complex spacecraft will benefit from integrated design and optimization of structural, optical, and control subsystems. Integrated design optimization will allow designers to make tradeoffs in objectives and constraints across these subsystems. The location, number, and types of passive and active devices distributed along the structure can have a dramatic impact on overall system performance. In addition, the manner in which structural mass is distributed can also serve as an effective mechanism for attenuating disturbance transmission between source and sensitive system components. This paper presents recent experience using optimization tools that have been developed for addressing some of these issues on a challenging testbed design problem. This particular testbed is one of a series of testbeds at the Jet Propulsion Laboratory under the sponsorship of the NASA Control Structure Interaction (CSI) Program to demonstrate nanometer level optical pathlength control on a flexible truss structure that emulates a spaceborne interferometer
Bending and Breathing Modes of the Galactic Disk
We explore the hypothesis that a passing satellite or dark matter subhalo has
excited coherent oscillations of the Milky Way's stellar disk in the direction
perpendicular to the Galactic midplane. This work is motivated by recent
observations of spatially dependent bulk vertical motions within ~ kpc of the
Sun. A satellite can transfer a fraction of its orbital energy to the disk
stars as it plunges through the Galactic midplane thereby heating and
thickening the disk. Bulk motions arise during the early stages of such an
event when the disk is still in an unrelaxed state. We present simple toy-model
calculations and simulations of disk-satellite interactions, which show that
the response of the disk depends on the relative velocity of the satellite.
When the component of the satellite's velocity perpendicular to the disk is
small compared with that of the stars, the perturbation is predominantly a
bending mode. Conversely, breathing and higher order modes are excited when the
vertical velocity of the satellite is larger than that of the stars. We argue
that the compression and rarefaction motions seen in three different surveys
are in fact breathing mode perturbations of the Galactic disk.Comment: 12 pages, 12 figure
- …
