22,071 research outputs found

    Ultrathin Amorphous Silica Membrane Enhances Proton Transfer across Solid-to-Solid Interfaces of Stacked Metal Oxide Nanolayers while Blocking Oxygen

    Get PDF
    A large jump of proton transfer rates across solid-to-solid interfaces by inserting an ultrathin amorphous silica layer into stacked metal oxide nanolayers is discovered using electrochemical impedance spectroscopy and Fourier-transform infrared reflection absorption spectroscopy (FT-IRRAS). The triple stacked nanolayers of Co3O4, SiO2, and TiO2 prepared by atomic layer deposition (ALD) enable a proton flux of 2400 ± 60 s−1 nm−2 (pH 4, room temperature), while a single TiO2 (5 nm) layer exhibits a threefold lower flux of 830 s−1 nm−2. Based on FT-IRRAS measurements, this remarkable enhancement is proposed to originate from the sandwiched silica layer forming interfacial SiOTi and SiOCo linkages to TiO2 and Co3O4 nanolayers, respectively, with the O bridges providing fast H+ hopping pathways across the solid-to-solid interfaces. Together with the complete O2 impermeability of a 2 nm ALD-grown SiO2 layer, the high flux for proton transport across multi-stack metal oxide layers opens up the integration of incompatible catalytic environments to form functional nanoscale assemblies such as artificial photosystems for CO2 reduction by H2O

    Three-loop HTL gluon thermodynamics at intermediate coupling

    Get PDF
    We calculate the thermodynamic functions of pure-glue QCD to three-loop order using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T≃3  TcT\simeq3\;T_c. Our results suggest that HTLpt provides a systematic framework that can used to calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos. Published in JHE

    Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films

    Full text link
    A long standing problem of domain switching process - how domains nucleate - is examined in ultrathin ferroelectric films. We demonstrate that the large depolarization fields in ultrathin films could significantly lower the nucleation energy barrier (U*) to a level comparable to thermal energy (kBT), resulting in power-law like polarization decay behaviors. The "Landauer's paradox": U* is thermally insurmountable is not a critical issue in the polarization switching of ultrathin ferroelectric films. We empirically find a universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure

    Spontaneous separation of two-component Fermi gases in a double-well trap

    Full text link
    The two-component Fermi gas in a double-well trap is studied using the density functional theory and the density profile of each component is calculated within the Thomas-Fermi approximation. We show that the two components are spatially separate in the two wells once the repulsive interaction exceeds the Stoner point, signaling the occurrence of the ferromagnetic transition. Therefore, the double-well trap helps to explore itinerant ferromagnetism in atomic Fermi gases, since the spontaneous separation can be examined by measuring component populations in one well.Comment: 6 pages, 6 figures, to appear in ep

    Effective Vortex Pinning in MgB2 thin films

    Full text link
    We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc

    Phase Sensitive Recombination of Two Bose-Einstein Condensates on an Atom Chip

    Full text link
    The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10 and 40% and provides a robust way to read out the phase of an atom interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of dark solitons created during the merging of the condensates.Comment: 5 pages, 4 figure

    Note on Moufang-Noether currents

    Full text link
    The derivative Noether currents generated by continuous Moufang tranformations are constructed and their equal-time commutators are found. The corresponding charge algebra turns out to be a birepresentation of the tangent Mal'ltsev algebra of an analytic Moufang loop.Comment: LaTeX2e, 6 pages, no figures, presented on "The XVth International Colloquium on Integrable Systems and Quantum Symmetries, Prague, 15-17 June, 2006
    • …
    corecore