24,908 research outputs found
Pairwise Entanglement and Geometric Phase in -Dimensional Free-Fermion Lattice Systems
The pairwise entanglement, measured by concurrence and geometric phase in
-dimensional free-fermion lattice systems have been studied for the
ground state in this paper. Their derivation with respect to the external
parameter show the singularity closed to the phase transition points, and can
be used to detect the phase transition in this model. Furthermore our studies
show for the free-fermion model that both concurrence and geometric phase shows
the intimate connection with the correlation functions. The possible relation
between concurrence and geometric phase has been also discussed.Comment: 7+pages, EPJD styl
Cessation of X-ray Pulsation of GX 1+4
We report results from our weekly monitoring campaign on the X-ray pulsar GX
1+4 with the {\em Rossi X-ray Timing Explorer} satellite. The spin-down trend
of GX 1+4 was continuing, with the pulsar being at its longest period ever
measured (about 138.7 s). At the late stage of the campaign, the source entered
an extended faint state, when its X-ray (2-60 keV) flux decreased significantly
to an average level of . It was
highly variable in the faint state; the flux dropped to as low as . In several observations during this
period, the X-ray pulsation became undetectable. We can, therefore, conclude
conservatively that the pulsed fraction, which is normally 70%
(peak-to-peak), must have decreased drastically in those cases. This is very
similar to what was observed of GX 1+4 in 1996 when it became similarly faint
in X-ray. In fact, the flux at which the cessation of X-ray pulsation first
occurred is nearly the same as it was in 1996. We suggest that we have, once
again, observed the propeller effect in GX 1+4, a phenomenon that is predicted
by theoretical models of accreting X-ray pulsars.Comment: 13 pages, 9 figures (available at
http://www.physics.purdue.edu/~cui/ftp/cuifigs.tar.gz). To appear in Ap
Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering
We study the Kondo effect in a quantum dot embedded in a mesoscopic ring
taking into account intradot spin-flip scattering . Based on the finite-
slave-boson mean-field approach, we find that the Kondo peak in the density of
states is split into two peaks by this coherent spin-flip transition, which is
responsible for some interesting features of the Kondo-assisted persistent
current circulating the ring: (1) strong suppression and crossover to a sine
function form with increasing ; (2) appearance of a "hump" in the
-dependent behavior for odd parity. -induced reverse of the persistent
current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let
AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading
© 2019 The Authors Aerobic granular sludge (AGS) is promising in wastewater treatment. However, the formation and existence of AGS under low organic loading rate (OLR) is still not fully understood due to a knowledge gap in the variations and correlations of N-acyl-homoserine lactones (AHLs), the microbial community, extracellular polymeric substances (EPS) and other physiochemical granule properties. This study comprehensively investigated the AHL-mediated quorum sensing (QS) and microbial community characters in the AGS fed with ammonium-rich wastewater under a low OLR of 0.15 kg COD (m3 d)−1. The results showed that the AGS appeared within 90 days, and the size of mature granules was over 700 μm with strong settleability and ammonium removal performance. More tightly-bound extracellular polysaccharide and tightly-bound extracelluar protein were produced in the larger AGS. C10-HSL and C12-HSL gradually became dominant in sludge, and short-chain AHLs dominated in water. EPS producers and autotrophic nitrifiers were successfully retained in the AGS under low OLR. AHL-mediated QS utilized C10-HSL, C12-HSL and 3OC6-HSL as the critical AHLs to regulate the TB-EPS in aerobic granulation, and autotrophic nitrifiers may perform interspecific communication with C10-HSL. The correlations of bacterial genera with AGS properties and AHLs were complex due to the dynamic fluctuations of microbial composition and other variable factors in the mixed-culture system. These findings confirmed the participation of AHL-mediated QS in the regulation of microbial community characters and AGS properties under low OLR, which may provide guidance for the operation of AGS systems under low OLR from a microbiological viewpoint
Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing
A biodegradable two-dimensional (2D) delivery platform based on loading black phosphorus nanosheets (BPs) with Cas9 ribonucleoprotein engineered with three nuclear localization signals (NLSs) at C terminus (Cas9N3) is successfully established. The Cas9N3-BPs enter cells effectively via membrane penetration and endocytosis pathways, followed by a BPs biodegradation-associated endosomal escape and cytosolic releases of the loaded Cas9N3 complexes. The Cas9N3-BPs thus provide efficient genome editing and gene silencing in vitro and in vivo at a relatively low dose as compared with other nanoparticle-based delivery platforms. This biodegradable 2D delivery platform offers a versatile cytosolic delivery approach for CRISPR/Cas9 ribonucleoprotein and other bioactive macromolecules for biomedical applications
Overlap with the Separable State and Phase Transition in the Dicke Model: Zero and Finite Temperature
Overlap with the separable state is introduced in this paper for the purpose
of characterizing the overall correlation in many-body systems. This definition
has clear geometric and physical meaning, and moreover can be considered as the
generalization of the concept-Anderson Orthogonality Catastrophe. As an
exemplification, it is used to mark the phase transition in the Dicke model for
zero and finite temperature. And our discussion shows that it can faithfully
reflect the phase transition properties of this model whether for zero or
finite temperature. Furthermore the overlap for ground state also indicates the
appearance of multipartite entanglement in Dicke model.Comment: 11+ pages. Enlarged version including a formal proof for the method
to find the maximal overlap. accepted by PRA
Quantum Phase Diffusion in a Small Underdamped Josephson Junction
Quantum phase diffusion in a small underdamped Nb/AlO/Nb junction (
0.4 m) is demonstrated in a wide temperature range of 25-140 mK where
macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We
propose a two-step transition model to describe the switching process in which
the escape rate out of the potential well and the transition rate from phase
diffusion to the running state are considered. The transition rate extracted
from the experimental switching current distribution follows the predicted
Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes
dominant.Comment: 4 pages, 4 figures, 1 tabl
Inelastic cotunneling induced decoherence and relaxation, charge and spin currents in an interacting quantum dot under a magnetic field
We present a theoretical analysis of several aspects of nonequilibirum
cotunneling through a strong Coulomb-blockaded quantum dot (QD) subject to a
finite magnetic field in the weak coupling limit. We carry this out by
developing a generic quantum Heisenberg-Langevin equation approach leading to a
set of Bloch dynamical equations which describe the nonequilibrium cotunneling
in a convenient and compact way. These equations describe the time evolution of
the spin variables of the QD explicitly in terms of the response and
correlation functions of the free reservoir variables. This scheme not only
provides analytical expressions for the relaxation and decoherence of the
localized spin induced by cotunneling, but it also facilitates evaluations of
the nonequilibrium magnetization, the charge current, and the spin current at
arbitrary bias-voltage, magnetic field, and temperature. We find that all
cotunneling events produce decoherence, but relaxation stems only from {\em
inelastic} spin-flip cotunneling processes. Moreover, our specific calculations
show that cotunneling processes involving electron transfer (both spin-flip and
non-spin-flip) contribute to charge current, while spin-flip cotunneling
processes are required to produce a net spin current in the asymmetric coupling
case. We also point out that under the influence of a nonzero magnetic field,
spin-flip cotunneling is an energy-consuming process requiring a sufficiently
strong external bias-voltage for activation, explaining the behavior of
differential conductance at low temperature: in particular, the splitting of
the zero-bias anomaly in the charge current and a broad zero-magnitude "window"
of differential conductance for the spin current near zero-bias-voltage.Comment: 15 pages, 5 figures, published version, to appear in Phys. Rev.
- …