128 research outputs found

    Turbulent Mixing in the Outer Solar Nebula

    Full text link
    The effects of turbulence on the mixing of gases and dust in the outer Solar nebula are examined using 3-D MHD calculations in the shearing-box approximation with vertical stratification. The turbulence is driven by the magneto-rotational instability. The magnetic and hydrodynamic stresses in the turbulence correspond to an accretion time at the midplane about equal to the lifetimes of T Tauri disks, while accretion in the surface layers is thirty times faster. The mixing resulting from the turbulence is also fastest in the surface layers. The mixing rate is similar to the rate of radial exchange of orbital angular momentum, so that the Schmidt number is near unity. The vertical spreading of a trace species is well-matched by solutions of a damped wave equation when the flow is horizontally-averaged. The damped wave description can be used to inexpensively treat mixing in 1-D chemical models. However, even in calculations reaching a statistical steady state, the concentration at any given time varies substantially over horizontal planes, due to fluctuations in the rate and direction of the transport. In addition to mixing species that are formed under widely varying conditions, the turbulence intermittently forces the nebula away from local chemical equilibrium. The different transport rates in the surface layers and interior may affect estimates of the grain evolution and molecular abundances during the formation of the Solar system.Comment: To appear in the Astrophysical Journal; 20 pages, 9 figure

    Effects of accretion flow on the chemical structure in the inner regions of protoplanetary disks

    Get PDF
    We have studied the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (\ga 100K) inner region of protoplanetary disks. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly through the evaporation of warm ice mantles, to show how the abundance profile and line emission depend on the accretion flow. Our results show that some evaporated molecules keep high abundances only when the accretion velocity is large enough, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of \la 10AU.Comment: 6 pages, 5 figures, Accepted for publication in A&

    Detection of Formaldehyde Towards the Extreme Carbon Star IRC+10216

    Full text link
    We report the detection of H2CO (formaldehyde) around the carbon-rich AGB star, IRC+10216. We find a fractional abundance with respect to molecular hydrogen of x(H2CO)= (1.3 {+1.5}{-0.8}) x 10^{-8}. This corresponds to a formaldehyde abundance with respect to water vapor of x(H2CO)/x(H2O)=(1.1 +/- 0.2) x 10^{-2}, in line with the formaldehyde abundances found in Solar System comets, and indicates that the putative extrasolar cometary system around IRC+10216 may have a similar chemical composition to Solar System comets. However, we also failed to detect CH3OH (methanol) around IRC+10216 and our upper limit of x(CH3OH)/x(H2O) < 7.7 x 10^{-4}, (3 sigma), indicates that methanol is substantially underabundant in IRC+10216, compared to Solar System comets. We also conclude, based on offset observations, that formaldehyde has an extended source in the envelope of IRC+10216 and may be produced by the photodissociation of a parent molecule, similar to the production mechanism for formaldehyde in Solar System comet comae. Preliminary mapping observations also indicate a possible asymmetry in the spatial distribution of formaldehyde around IRC+10216, but higher signal-to-noise observations are required to confirm this finding. This study is based on observations carried out with the IRAM 30m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). (abridged)Comment: accepted to ApJ, 45 pages, 11 figure

    The abundance of SiS in circumstellar envelopes around AGB stars

    Full text link
    New SiS multi-transition (sub-)millimetre line observations of a sample of AGB stars with varying photospheric C/O-ratios and mass-loss rates are presented. A combination of low- and high-energy lines are important in constraining the circumstellar distribution of SiS molecules. A detailed radiative transfer modelling of the observed SiS line emission is performed, including the effect of thermal dust grains in the excitation analysis. We find that the circumstellar fractional abundance of SiS in these environments has a strong dependence on the photospheric C/O-ratio as expected from chemical models. The carbon stars (C/O>1) have a mean fractional abundance of 3.1E-6, about an order of magnitude higher than found for the M-type AGB stars (C/O<1) where the mean value is 2.7E-7. These numbers are in reasonable agreement with photospheric LTE chemical models. SiS appears to behave similar to SiO in terms of photodissociation in the outer part of the circumstellar envelope. In contrast to previous results for the related molecule SiO, there is no strong correlation of the fractional abundance with density in the CSE, as would be the case if freeze-out onto dust grains were important. However, possible time-variability of the line emission in the lower J transitions and the sensitivity of the line emission to abundance gradients in the inner part of the CSE may mask a correlation with the density of the wind. There are indications that the SiS fractional abundance could be significantly higher closer to the star which, at least in the case of M-type AGB stars, would require non-equilibrium chemical processes.Comment: Accepted for publication in A&A (14 pages, 7 figures

    Chemistry in a gravitationally unstable protoplanetary disc

    Full text link
    Until now, axisymmetric, alpha-disc models have been adopted for calculations of the chemical composition of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate when self-gravity is important. In this case, spiral waves and shocks cause temperature and density variations that affect the chemistry. We have adopted a dynamical model of a solar-mass star surrounded by a massive (0.39 Msun), self-gravitating disc, similar to those that may be found around Class 0 and early Class I protostars, in a study of disc chemistry. We find that for each of a number of species, e.g. H2O, adsorption and desorption dominate the changes in the gas-phase fractional abundance; because the desorption rates are very sensitive to temperature, maps of the emissions from such species should reveal the locations of shocks of varying strengths. The gas-phase fractional abundances of some other species, e.g. CS, are also affected by gas-phase reactions, particularly in warm shocked regions. We conclude that the dynamics of massive discs have a strong impact on how they appear when imaged in the emission lines of various molecular species.Comment: 10 figures and 3 tables, accepted for publication in MNRA

    Carbon isotope fractionation and depletion in TMC1

    Full text link
    12C/13C isotopologue abundance anomalies have long been predicted for gas-phase chemistry in molecules other than CO and have recently been observed in the Taurus molecular cloud in several species hosting more than one carbon atom, i.e. CCH, CCS, CCCS and HC3_3N. Here we work to ascertain whether these isotopologic anomalies actually result from the predicted depletion of the 13C+ ion in an oxygen-rich optically-shielded dense gas, or from some other more particular mechanism or mechanisms. We observed λ\lambda3mm emission from carbon, sulfur and nitrogen-bearing isotopologues of HNC, CS and \HH CS at three positions in Taurus(TMC1, L1527 and the ammonia peak) using the ARO 12m telescope. We saw no evidence of 12C/13C anomalies in our observations. Although the pool of C+ is likely to be depleted in 13C 13C is not depleted in the general pool of carbon outside CO, which probably exists mostly in the form of C^0. The observed isotopologic abundance anomalies are peculiar to those species in which they are found.Comment: Accepted for publication in The Astrophysical Journal (mail journal

    The Circumstellar Environment of High-Mass Protostellar Objects: IV. C17O Observations and Depletion

    Full text link
    We observe 84 candidate young high-mass sources in the rare isotopologues C17O and C18O to investigate whether there is evidence for depletion (freeze-out) towards these objects. Observations of the J=2-1 transitions of C18O and C17O are used to derive the column densities of gas towards the sources and these are compared with those derived from submillimetre continuum observations. The derived fractional abundance suggests that the CO species show a range of degrees of depletion towards the objects. We then use the radiative transfer code RATRAN to model a selection of the sources to confirm that the spread of abundances is not a result of assumptions made when calculating the column densities. We find a range of abundances of C17O that cannot be accounted for by global variations in either the temperature or dust properties and so must reflect source to source variations. The most likely explanation is that different sources show different degrees of depletion of the CO. Comparison of the C17O linewidths of our sources with those of CS presented by other authors reveal a division of the sources into two groups. Sources with a CS linewidth >3 km/s have low abundances of C17O while sources with narrower CS lines have typically higher C17O abundances. We suggest that this represents an evolutionary trend. Depletion towards these objects shows that the gas remains cold and dense for long enough for the trace species to deplete. The range of depletion measured suggests that these objects have lifetimes of 2-4x10^5 years.Comment: 18 pages. Accepted for publication in Astronomy & Astrophysic

    The distribution of H13CN in the circumstellar envelope around IRC+10216

    Full text link
    H13CN J=8-7 sub-millimetre line emission produced in the circumstellar envelope around the extreme carbon star IRC+10216 has been imaged at sub-arcsecond angular resolution using the SMA. Supplemented by a detailed excitation analysis the average fractional abundance of H13CN in the inner wind (< 5E15 cm) is estimated to be about 4E-7, translating into a total HCN fractional abundance of 2E-5 using the isotopic ratio 12C/13C=50. Multi-transitional single-dish observations further requires the H13CN fractional abundance to remain more or less constant in the envelope out to a radius of about 4E16 cm, where the HCN molecules are effectively destroyed, most probably, by photodissociation. The large amount of HCN present in the inner wind provides effective line cooling that can dominate over that generated from CO line emission. It is also shown that great care needs to be taken in the radiative transfer modelling where non-local, and non-LTE, effects are important and where the radiation field from thermal dust grains plays a major role in exciting the HCN molecules. The amount of HCN present in the circumstellar envelope around IRC+10216 is consistent with predicted photospheric values based on equilibrium chemical models and indicates that any non-equilibrium chemistry occurring in the extended pulsating atmosphere has no drastic net effect on the fractional abundance of HCN molecules that enters the outer envelope. It further suggests that few HCN molecules are incorporated into dust grains.Comment: Accepted for publication in ApJ. 20 pages, 7 figure
    • …
    corecore