52 research outputs found

    Clinical correlates and prognostic impact of neurologic disorders in Takotsubo syndrome

    Get PDF
    Cardiac alterations are frequently observed after acute neurological disorders. Takotsubo syndrome (TTS) represents an acute heart failure syndrome and is increasingly recognized as part of the spectrum of cardiac complications observed after neurological disorders. A systematic investigation of TTS patients with neurological disorders has not been conducted yet. The aim of the study was to expand insights regarding neurological disease entities triggering TTS and to investigate the clinical profile and outcomes of TTS patients after primary neurological disorders. The International Takotsubo Registry is an observational multicenter collaborative effort of 45 centers in 14 countries (ClinicalTrials.gov, identifier NCT01947621). All patients in the registry fulfilled International Takotsubo Diagnostic Criteria. For the present study, patients were included if complete information on acute neurological disorders were available. 2402 patients in whom complete information on acute neurological status were available were analyzed. In 161 patients (6.7%) an acute neurological disorder was identified as the preceding triggering factor. The most common neurological disorders were seizures, intracranial hemorrhage, and ischemic stroke. Time from neurological symptoms to TTS diagnosis was <= 2 days in 87.3% of cases. TTS patients with neurological disorders were younger, had a lower female predominance, fewer cardiac symptoms, lower left ventricular ejection fraction, and higher levels of cardiac biomarkers. TTS patients with neurological disorders had a 3.2-fold increased odds of in-hospital mortality compared to TTS patients without neurological disorders. In this large-scale study, 1 out of 15 TTS patients had an acute neurological condition as the underlying triggering factor. Our data emphasize that a wide spectrum of neurological diseases ranging from benign to life-threatening encompass TTS. The high rates of adverse events highlight the need for clinical awareness

    Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin

    Get PDF
    Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163+ TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1+ TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation.Fil: Dusoswa, Sophie A.. Vrije Universiteit Amsterdam; Países BajosFil: Verhoeff, Jan. Vrije Universiteit Amsterdam; Países BajosFil: Abels, Erik. Vrije Universiteit Amsterdam; Países BajosFil: Mendez Huergo, Santiago Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Croci Russo, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Kuijper, Lisan H.. Vrije Universiteit Amsterdam; Países BajosFil: de Miguel, Elena. Vrije Universiteit Amsterdam; Países BajosFil: Wouters, Valerie M. C. J.. Vrije Universiteit Amsterdam; Países BajosFil: Best, Myron G.. Vrije Universiteit Amsterdam; Países BajosFil: Rodriguez, Ernesto. Vrije Universiteit Amsterdam; Países BajosFil: Cornelissen, Lenneke A.M.. Vrije Universiteit Amsterdam; Países BajosFil: van Vliet, Sandra J.. Vrije Universiteit Amsterdam; Países BajosFil: Wesseling, Pieter. Vrije Universiteit Amsterdam; Países BajosFil: Breakefield, Xandra O.. Vrije Universiteit Amsterdam; Países BajosFil: Noske, David P.. Vrije Universiteit Amsterdam; Países BajosFil: Würdinger, Thomas. Harvard Medical School; Estados UnidosFil: Broekman, Marike L.D.. Harvard Medical School; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: van Kooyk, Yvette. Vrije Universiteit Amsterdam; Países BajosFil: Garcia Vallejo, Juan J.. Vrije Universiteit Amsterdam; Países Bajo

    WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G<sub>2 </sub>cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G<sub>2 </sub>arrest and could sensitize OS cells to irradiation induced cell death.</p> <p>Methods</p> <p>WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot.</p> <p>Results</p> <p>WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G<sub>2 </sub>arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment.</p> <p>Conclusion</p> <p>We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G<sub>2 </sub>checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.</p

    Clinical correlates and prognostic impact of neurologic disorders in Takotsubo syndrome

    Get PDF
    © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Cardiac alterations are frequently observed after acute neurological disorders. Takotsubo syndrome (TTS) represents an acute heart failure syndrome and is increasingly recognized as part of the spectrum of cardiac complications observed after neurological disorders. A systematic investigation of TTS patients with neurological disorders has not been conducted yet. The aim of the study was to expand insights regarding neurological disease entities triggering TTS and to investigate the clinical profile and outcomes of TTS patients after primary neurological disorders. The International Takotsubo Registry is an observational multicenter collaborative effort of 45 centers in 14 countries (ClinicalTrials.gov, identifier NCT01947621). All patients in the registry fulfilled International Takotsubo Diagnostic Criteria. For the present study, patients were included if complete information on acute neurological disorders were available. 2402 patients in whom complete information on acute neurological status were available were analyzed. In 161 patients (6.7%) an acute neurological disorder was identified as the preceding triggering factor. The most common neurological disorders were seizures, intracranial hemorrhage, and ischemic stroke. Time from neurological symptoms to TTS diagnosis was ≤ 2 days in 87.3% of cases. TTS patients with neurological disorders were younger, had a lower female predominance, fewer cardiac symptoms, lower left ventricular ejection fraction, and higher levels of cardiac biomarkers. TTS patients with neurological disorders had a 3.2-fold increased odds of in-hospital mortality compared to TTS patients without neurological disorders. In this large-scale study, 1 out of 15 TTS patients had an acute neurological condition as the underlying triggering factor. Our data emphasize that a wide spectrum of neurological diseases ranging from benign to life-threatening encompass TTS. The high rates of adverse events highlight the need for clinical awareness.The International Takotsubo Registry was supported by the Biss Davies Charitable Trust. Dr. Scheitz has been supported by the Corona Foundation. Dr. Templin has been supported by the H.H. Sheikh Khalifa bin Hamad Al-Thani Research Programme and the Swiss Heart Foundation.info:eu-repo/semantics/publishedVersio

    Prognostic impact of acute pulmonary triggers in patients with Takotsubo syndrome : new insights from the International Takotsubo Registry

    Get PDF
    © 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.Aims: Acute pulmonary disorders are known physical triggers of takotsubo syndrome (TTS). This study aimed to investigate prevalence of acute pulmonary triggers in patients with TTS and their impact on outcomes. Methods and results: Patients with TTS were enrolled from the International Takotsubo Registry and screened for triggering factors and comorbidities. Patients were categorized into three groups (acute pulmonary trigger, chronic lung disease, and no lung disease) to compare clinical characteristics and outcomes. Of the 1670 included patients with TTS, 123 (7%) were identified with an acute pulmonary trigger, and 194 (12%) had a known history of chronic lung disease. The incidence of cardiogenic shock was highest in patients with an acute pulmonary trigger compared with those with chronic lung disease or without lung disease (17% vs. 10% vs. 9%, P = 0.017). In-hospital mortality was also higher in patients with an acute pulmonary trigger than in the other two groups, although not significantly (5.7% vs. 1.5% vs. 4.2%, P = 0.13). Survival analysis demonstrated that patients with an acute pulmonary trigger had the worst long-term outcome (P = 0.002). The presence of an acute pulmonary trigger was independently associated with worse long-term mortality (hazard ratio 2.12, 95% confidence interval 1.33-3.38; P = 0.002). Conclusions: The present study demonstrates that TTS is related to acute pulmonary triggers in 7% of all TTS patients, which accounts for 21% of patients with physical triggers. The presence of acute pulmonary trigger is associated with a severe in-hospital course and a worse long-term outcome.C. T. has been supported by the H.H. Sheikh Khalifa binHamad Al-Thani Research Programme and the Swiss HeartFoundation. The InterTAK Registry is supported by the BissDavies Charitable Trust. L. S. M. has been supported by EUHORIZON 2020(SILICOFCM ID777204)info:eu-repo/semantics/publishedVersio

    Integrating treatment cost reduction strategies and biomarker research to reduce costs and personalize expensive treatments: an example of a self-funding trial in non-small cell lung cancer

    Get PDF
    Personalization of treatment offers the opportunity to treat patients more effectively based on their dominant disease-specific features. The increasing number and types of treatment, and the high costs associated with these treatments, however, demand new approaches that improve patient selection while reducing treatment-associated costs to ensure sustainable healthcare. The DEDICATION-1 trial has been designed to investigate the non-inferiority of lower dosing regimens when compared to standard of care dosing regimens as a potential effective treatment cost reduction strategy to reduce costs of treatment with expensive immune checkpoint inhibitors in non-small cell lung cancer. If non-inferiority is confirmed, lower dosing regimens could be implemented for all therapeutic indications of pembrolizumab. The cost savings obtained within the trial are partly reinvested in biomarker research to improve the personalization of pembrolizumab treatment. The implementation of these biomarkers will potentially lead to additional cost savings by preventing ineffective pembrolizumab exposure, thereby further reducing the financial pressure on healthcare systems. The concepts discussed within this perspective can be applied both to other anticancer agents, as well as to treatments prescribed outside the oncology field

    Clinical correlates and prognostic impact of neurologic disorders in Takotsubo syndrome

    Get PDF
    Cardiac alterations are frequently observed after acute neurological disorders. Takotsubo syndrome (TTS) represents an acute heart failure syndrome and is increasingly recognized as part of the spectrum of cardiac complications observed after neurological disorders. A systematic investigation of TTS patients with neurological disorders has not been conducted yet. The aim of the study was to expand insights regarding neurological disease entities triggering TTS and to investigate the clinical profile and outcomes of TTS patients after primary neurological disorders. The International Takotsubo Registry is an observational multicenter collaborative effort of 45 centers in 14 countries (ClinicalTrials.gov, identifier NCT01947621). All patients in the registry fulfilled International Takotsubo Diagnostic Criteria. For the present study, patients were included if complete information on acute neurological disorders were available. 2402 patients in whom complete information on acute neurological status were available were analyzed. In 161 patients (6.7%) an acute neurological disorder was identified as the preceding triggering factor. The most common neurological disorders were seizures, intracranial hemorrhage, and ischemic stroke. Time from neurological symptoms to TTS diagnosis was ≤ 2 days in 87.3% of cases. TTS patients with neurological disorders were younger, had a lower female predominance, fewer cardiac symptoms, lower left ventricular ejection fraction, and higher levels of cardiac biomarkers. TTS patients with neurological disorders had a 3.2-fold increased odds of in-hospital mortality compared to TTS patients without neurological disorders. In this large-scale study, 1 out of 15 TTS patients had an acute neurological condition as the underlying triggering factor. Our data emphasize that a wide spectrum of neurological diseases ranging from benign to life-threatening encompass TTS. The high rates of adverse events highlight the need for clinical awareness

    Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma

    No full text
    Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice surviva

    Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter

    No full text
    Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents
    corecore