64 research outputs found

    Benefit of surgery after chemoradiotherapy in stage IIIB (T4 and/or N3) non–small cell lung cancer

    Get PDF
    AbstractObjective: The purpose of this study was to evaluate postchemoradiotherapy surgery in stage IIIB non–small cell lung cancer. Methods: Forty patients with stage IIIB non–small cell lung cancer were included in this phase II study. A preoperative diagnosis of stage IIIB cancer was based on mediastinoscopy or a thoracotomy in all patients. Induction treatment included two cycles of cisplatin (100 mg/m2, day 1), 5-fluorouracil (1 g/m2, days 1-3), and vinblastine (4 mg/m2, day 1) combined with 42 Gy of hyperfractionated radiotherapy delivering 21 Gy in two sessions. Patients with a clinical response were offered surgery. Results: The minimum follow-up for survivors was 48 months. Thirty patients had a T4 lesion and 18 had N3 disease. Twenty-nine patients (73%) had a clinical objective tumor response after induction treatment. These 29 patients underwent thoracotomy, and a complete resection was performed in 23 (58%). Two postoperative deaths occurred (7%). Four patients had a pathologic complete response at the time of surgery (10%). The 5-year survival is 19% for the overall population. When only patients who had persistent viable tumor cells at surgery are considered (n = 25), the 5-year survival is 28%. The 5-year survival is 42% for patients having no mediastinal lymph node involvement at the time of surgery and being treated with complete resection. Conclusion: This study shows that surgery, when feasible, is associated with a 28% long-term survival for patients in whom chemoradiotherapy alone fails to control disease

    Radar interferometry based settlement monitoring in tunnelling: visualisation and accuracy analyses

    Get PDF
    Background The accurate, efficient and economical monitoring of settlements caused by tunnel boring machines, especially in regions of particular interest such as critical inner city areas, has become an important aspect of the tunnelling operation. Besides conventional terrestrial based methods to capture settlements, satellite based techniques that can accurately determine displacements remotely, are increasingly being used to augment standard terrestrial measurements. However, not much attention has been paid to analyse the accuracy of satellite based measurement data. In addition, there is also a lack of studies on how to visualise the resulting huge amount of data in the context of both the tunnel advancement and the existing building infrastructure. Methods This paper introduces the basics of settlement monitoring using radar interferometry methods, in particular showing the results obtained by processing radar images from the TerraSAR-X satellite to monitor a downtown construction site in DĂŒsseldorf, Germany, where a new underground line (“Wehrhahn-Linie”) is being built. By comparing terrestrial measurements with remote satellite based settlement data in temporal and spatial corridors, the accuracy of the radar interferometry method is shown. Moreover, a 4D visualisation concept is presented that correlates satellite and terrestrial based settlement data correlated with above-ground buildings and boring machine performance parameters within a Virtual Reality (VR) environment. Results By comparing up to 23,000 pairs of satellite and terrestrial based settlement data points of a real tunnelling project an accuracy of about ±1.5 mm in the measurement of deformation using the method of radar interferometry in urban areas can be stated. In addition, providing a visual analysis of data sources within a VR environment, the accuracy of terrestrial and satellite-based measurements can be visualised in different time steps. Sources of error that affect the degree of accuracy, such as atmospheric conditions, systematic errors in the evaluation of radar images and local events in the spatial corridor, can be quantified. In addition, the 4D visualisation can help reveal direct interdependencies between settlement data and boring machine performance data. Conclusions The Persistent Scatterer Interferometry (PSI) based on high resolution radar images of the TerraSAR-X satellite, in combination with conventional ground-based terrestrial measurements, provides a new settlement monitoring approach in tunnelling. For example, due to minimized surveying works and disruptions of construction activities on site and due to the large settlement area coming with a high magnitude of settlement data points, this combined monitoring approach is very practical and economical. Moreover, by visualizing the settlement data properly, the risk of damage of surface structures can be analysed and understood more precisely, which increases the safety of underground works

    Invasive Plants and Enemy Release: Evolution of Trait Means and Trait Correlations in Ulex europaeus

    Get PDF
    Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species

    Conserved CDC20 Cell Cycle Functions Are Carried out by Two of the Five Isoforms in Arabidopsis thaliana

    Get PDF
    The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes

    Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1

    Get PDF
    Rice MONOCULM 1 (MOC1) and its orthologues LS/LAS (lateral suppressor in tomato and Arabidopsis) are key promoting factors of shoot branching and tillering in higher plants. However, the molecular mechanisms regulating MOC1/LS/LAS have remained elusive. Here we show that the rice tiller enhancer (te) mutant displays a drastically increased tiller number. We demonstrate that TE encodes a rice homologue of Cdh1, and that TE acts as an activator of the anaphase promoting complex/cyclosome (APC/C) complex. We show that TE coexpresses with MOC1 in the axil of leaves, where the APC/CTE complex mediates the degradation of MOC1 by the ubiquitin–26S proteasome pathway, and consequently downregulates the expression of the meristem identity gene Oryza sativa homeobox 1, thus repressing axillary meristem initiation and formation. We conclude that besides having a conserved role in regulating cell cycle, APC/CTE has a unique function in regulating the plant-specific postembryonic shoot branching and tillering, which are major determinants of plant architecture and grain yield

    Variation of thermal plasticity for functional traits between populations of an invasive aquatic plant from two climatic regions

    No full text
    International audienceTemperature inducible phenotypic plasticity is a major player in plant responses to climate warming. Functional responses and their role in determining thermal plasticity of plants remain poorly understood. Our objective was to compare trait responses of six populations of Ludwigia peploides resulting from seed from Oceanic climate and from Mediterranean climate after an exposure at three temperatures (16, 24, and 30°C). A comparative analysis showed that at 30°C, the six populations of L. peploides shared different morphological responses, whereas a common pattern of morphological responses was found for the six populations at 16°C. At 16°C, the growth was very low suggesting a stress. At 30°C, the three Mediterranean populations of L. peploides accumulated ≈ sevenfold more total biomass than the populations from Oceanic region. Despite drawing similar response pattern to temperature, the populations showed several different metabolic responses. The thermal plastic responses to the highest temperature differed according to the origin of the populations. The Mediterranean populations of L. peploides could be better adapted to rising temperature. These abilities could allow them to take advantage from climate warming if the temperature is not warming up to temperature above a critical threshold
    • 

    corecore