4,625 research outputs found
Nucleus from String Theory
In generic holographic QCD, we find that baryons are bound to form a nucleus,
and that its radius obeys the empirically-known mass number (A) dependence r
A^{1/3} for large A. Our result is robust, since we use only a generic property
of D-brane actions in string theory. We also show that nucleons are bound
completely in a finite volume. Furthermore, employing a concrete holographic
model (derived by Hashimoto, Iizuka, and Yi, describing a multi-baryon system
in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1) x A^{1/3}
[fm], which is consistent with experiments.Comment: 4 pages; Ver.2: terminology on nuclear density saturation modified, a
reference adde
Path-integral virial estimator for reaction rate calculation based on the quantum instanton approximation
The quantum instanton approximation is a type of quantum transition state
theory that calculates the chemical reaction rate using the reactive flux
correlation function and its low order derivatives at time zero. Here we
present several path-integral estimators for the latter quantities, which
characterize the initial decay profile of the flux correlation function. As
with the internal energy or heat capacity calculation, different estimators
yield different variances (and therefore different convergence properties) in a
Monte Carlo calculation. Here we obtain a virial-type estimator by using a
coordinate scaling procedure rather than integration by parts, which allows
more computational benefits. We also consider two different methods for
treating the flux operator, i.e., local-path and global-path approaches, in
which the latter achieves a smaller variance at the cost of using second-order
potential derivatives. Numerical tests are performed for a one-dimensional
Eckart barrier and a model proton transfer reaction in a polar solvent, which
illustrates the reduced variance of the virial estimator over the corresponding
thermodynamic estimator.Comment: 23 pages, 5 figures, 1 tabl
Periodicity and criticality in the Olami-Feder-Christensen model of earthquakes
Characteristic versus critical features of earthquakes are studied on the
basis of the Olami-Feder-Christensen model. It is found that the local
recurrence-time distribution exhibits a sharp -function-like peak
corresponding to rhythmic recurrence of events with a fixed ``period'' uniquely
determined by the transmission parameter of the model, together with a
power-law-like tail corresponding to scale-free recurrence of events. The model
exhibits phenomena closely resembling the asperity known in seismology
Weak Lensing of Galaxy Clusters in MOND
We study weak gravitational lensing of galaxy clusters in terms of the MOND
(MOdified Newtonian Dynamics) theory. We calculate shears and convergences of
background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and
the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare
them with observational data. The mass profile is modeled as a sum of X-ray
gas, galaxies and dark halo. For the shear as a function of the angular radius,
MOND predicts a shallower slope than the data irrespective of the critical
acceleration parameter . The dark halo is necessary to explain the data
for any and for three interpolation functions. If the dark halo is
composed of massive neutrinos, its mass should be heavier than 2 eV. However
the constraint still depends on the dark halo model and there are systematic
uncertainties, and hence the more careful study is necessary to put a stringent
constraint.Comment: 12 pages, 7 figures, references added, minor changes, accepted for
publication in Ap
Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer
We combine explicit correlation via the canonical transcorrelation approach
with the density matrix renormalization group and initiator full configuration
interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer
curve, {\it without} the use of composite methods. In particular, our direct
density matrix renormalization group calculations produce a well-depth of
=931.2 cm which agrees very well with recent experimentally derived
estimates =929.7~cm [Science, 324, 1548 (2009)] and
=934.6~cm [Science, 326, 1382 (2009)]], as well the best composite
theoretical estimates, =938~cm [J. Phys. Chem. A, 111,
12822 (2007)] and =935.1~cm [Phys. Chem. Chem. Phys., 13,
20311 (2011)]. Our results suggest possible inaccuracies in the functional form
of the potential used at shorter bond lengths to fit the experimental data
[Science, 324, 1548 (2009)]. With the density matrix renormalization group we
also compute near-exact vertical excitation energies at the equilibrium
geometry. These provide non-trivial benchmarks for quantum chemical methods for
excited states, and illustrate the surprisingly large error that remains for
1 state with approximate multi-reference configuration
interaction and equation-of-motion coupled cluster methods. Overall, we
demonstrate that explicitly correlated density matrix renormalization group and
initiator full configuration interaction quantum Monte Carlo methods allow us
to fully converge to the basis set and correlation limit of the
non-relativistic Schr\"odinger equation in small molecules
A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury
Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury
First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: consequences to structural transition temperatures
Specific forms of the exchange correlation energy functionals in
first-principles density functional theory-based calculations, such as the
local density approximation (LDA) and generalized-gradient approximations
(GGA), give rise to structural lattice parameters with typical errors of -2%
and 2%. Due to a strong coupling between structure and polarization, the order
parameter of ferroelectric transitions, they result in large errors in
estimation of temperature dependent ferroelectric structural transition
properties. Here, we employ a recently developed GGA functional of Wu and Cohen
[Phys. Rev. B 73, 235116 (2006)] and determine total-energy surfaces for
zone-center distortions of BaTiO3, PbTiO3, and SrTiO3, and compare them with
the ones obtained with calculations based on standard LDA and GGA. Confirming
that the Wu and Cohen functional allows better estimation of structural
properties at 0 K, we determine a new set of parameters defining the effective
Hamiltonian for ferroelectric transition in BaTiO3. Using the new set of
parameters, we perform molecular-dynamics (MD) simulations under effective
pressures p=0.0 GPa, p=-2.0 GPa, and p=-0.005T GPa. The simulations under
p=-0.005T GPa, which is for simulating thermal expansion, show a clear
improvement in the cubic to tetragonal transition temperature and c/a parameter
of its ferroelectric tetragonal phase, while the description of transitions at
lower temperatures to orthorhombic and rhombohedral phases is marginally
improved. Our findings augur well for use of Wu-Cohen functional in studies of
ferroelectrics at nano-scale, particularly in the form of epitaxial films where
the properties depend crucially on the lattice mismatch.Comment: 10 pages, 7 figures, 3 tables, resubmitted to PR
Comparative Study of Judicial Administration
Description of an international project directed by Takeshi Kojima (Chuo University) with the assistance of Professor Frederick H. Zemans (Osgoode Hall Law School)
- …