4,625 research outputs found

    Nucleus from String Theory

    Full text link
    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass number (A) dependence r A^{1/3} for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multi-baryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1) x A^{1/3} [fm], which is consistent with experiments.Comment: 4 pages; Ver.2: terminology on nuclear density saturation modified, a reference adde

    Path-integral virial estimator for reaction rate calculation based on the quantum instanton approximation

    Full text link
    The quantum instanton approximation is a type of quantum transition state theory that calculates the chemical reaction rate using the reactive flux correlation function and its low order derivatives at time zero. Here we present several path-integral estimators for the latter quantities, which characterize the initial decay profile of the flux correlation function. As with the internal energy or heat capacity calculation, different estimators yield different variances (and therefore different convergence properties) in a Monte Carlo calculation. Here we obtain a virial-type estimator by using a coordinate scaling procedure rather than integration by parts, which allows more computational benefits. We also consider two different methods for treating the flux operator, i.e., local-path and global-path approaches, in which the latter achieves a smaller variance at the cost of using second-order potential derivatives. Numerical tests are performed for a one-dimensional Eckart barrier and a model proton transfer reaction in a polar solvent, which illustrates the reduced variance of the virial estimator over the corresponding thermodynamic estimator.Comment: 23 pages, 5 figures, 1 tabl

    Periodicity and criticality in the Olami-Feder-Christensen model of earthquakes

    Full text link
    Characteristic versus critical features of earthquakes are studied on the basis of the Olami-Feder-Christensen model. It is found that the local recurrence-time distribution exhibits a sharp δ\delta-function-like peak corresponding to rhythmic recurrence of events with a fixed ``period'' uniquely determined by the transmission parameter of the model, together with a power-law-like tail corresponding to scale-free recurrence of events. The model exhibits phenomena closely resembling the asperity known in seismology

    Weak Lensing of Galaxy Clusters in MOND

    Get PDF
    We study weak gravitational lensing of galaxy clusters in terms of the MOND (MOdified Newtonian Dynamics) theory. We calculate shears and convergences of background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare them with observational data. The mass profile is modeled as a sum of X-ray gas, galaxies and dark halo. For the shear as a function of the angular radius, MOND predicts a shallower slope than the data irrespective of the critical acceleration parameter g0g_0. The dark halo is necessary to explain the data for any g0g_0 and for three interpolation functions. If the dark halo is composed of massive neutrinos, its mass should be heavier than 2 eV. However the constraint still depends on the dark halo model and there are systematic uncertainties, and hence the more careful study is necessary to put a stringent constraint.Comment: 12 pages, 7 figures, references added, minor changes, accepted for publication in Ap

    Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    Get PDF
    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of DeD_e=931.2 cm−1^{-1} which agrees very well with recent experimentally derived estimates DeD_e=929.7±2\pm 2~cm−1^{-1} [Science, 324, 1548 (2009)] and DeD_e=934.6~cm−1^{-1} [Science, 326, 1382 (2009)]], as well the best composite theoretical estimates, DeD_e=938±15\pm 15~cm−1^{-1} [J. Phys. Chem. A, 111, 12822 (2007)] and DeD_e=935.1±10\pm 10~cm−1^{-1} [Phys. Chem. Chem. Phys., 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [Science, 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 11Σg−^1\Sigma^-_g state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schr\"odinger equation in small molecules

    A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury

    Get PDF
    Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury

    First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: consequences to structural transition temperatures

    Full text link
    Specific forms of the exchange correlation energy functionals in first-principles density functional theory-based calculations, such as the local density approximation (LDA) and generalized-gradient approximations (GGA), give rise to structural lattice parameters with typical errors of -2% and 2%. Due to a strong coupling between structure and polarization, the order parameter of ferroelectric transitions, they result in large errors in estimation of temperature dependent ferroelectric structural transition properties. Here, we employ a recently developed GGA functional of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] and determine total-energy surfaces for zone-center distortions of BaTiO3, PbTiO3, and SrTiO3, and compare them with the ones obtained with calculations based on standard LDA and GGA. Confirming that the Wu and Cohen functional allows better estimation of structural properties at 0 K, we determine a new set of parameters defining the effective Hamiltonian for ferroelectric transition in BaTiO3. Using the new set of parameters, we perform molecular-dynamics (MD) simulations under effective pressures p=0.0 GPa, p=-2.0 GPa, and p=-0.005T GPa. The simulations under p=-0.005T GPa, which is for simulating thermal expansion, show a clear improvement in the cubic to tetragonal transition temperature and c/a parameter of its ferroelectric tetragonal phase, while the description of transitions at lower temperatures to orthorhombic and rhombohedral phases is marginally improved. Our findings augur well for use of Wu-Cohen functional in studies of ferroelectrics at nano-scale, particularly in the form of epitaxial films where the properties depend crucially on the lattice mismatch.Comment: 10 pages, 7 figures, 3 tables, resubmitted to PR

    Comparative Study of Judicial Administration

    Get PDF
    Description of an international project directed by Takeshi Kojima (Chuo University) with the assistance of Professor Frederick H. Zemans (Osgoode Hall Law School)
    • …
    corecore