12,118 research outputs found
An experimental investigation of the structural dynamics of a torsionally soft rotor in vacuum
An extensive data base of structural dynamic characteristics has been generated from an experimental program conducted on a torsionally soft two-bladed model helicopter rotor system. Measurements of vibratory strains for five modes of vibration were made at twenty-one locations on the two blades at speeds varying from 0 to 1000 RPM and for several combinations of precone, droop and flexure stiffness. Tests were conducted in vacuum under carefully controlled conditions using a unique excitation device with a system of piezoelectric crystals bonded to the blade surface near the root. Frequencies, strain mode shapes and dampings are extracted from the time histories and can be used to validate structural dynamics codes. The dynamics of the system are such that there is a clear tendency for the first torsion and second flap modes to couple within the speed range considered. Strain mode shapes vary significantly with speed and configuration. This feature is important in the calcualtion of aeroelastic instabilities. The tension axis tests confirmed that the modulus-weighted centroid for the nonhomogeneous airfoil is slightly off the mass centroid and validated previous static tests done to determine location of the tension axis
Magnetization plateau and incommensurate spin modulation in Ca3Co2O6
The magnetic properties of a trigonal prism unit of the spin-2 frustrated
compound Ca3Co2O6 are studied by means of the density-matrix renormalization
group method. A magnetization plateau at ( is the saturation
magnetization) with ferrimagnetic structure is observed. By fitting the
experimental data of magnetic curve, an estimation of the couplings gives
J1=-26.84K, J_{2}=0.39K, and J_{3}=0.52K. The local magnetic moments are
unveiled to exhibit an incommensurate sinusoidally modulation along the three
chains of the trigonal prism, which gives a strong theoretical support to the
experimentally observed incommensurate partially disordered antiferromagnetic
state for Ca3Co2O6. The present result suggests that the modulation indeed
originates from the competition of antiferromagnetic and ferromagnetic
couplings.Comment: 4 pages, 4 figures, accepted by Appl. Phys. Lett
On design of robust fault detection filter in finite-frequency domain with regional pole assignment
This brief is concerned with the fault detection (FD) filter design problem for an uncertain linear discrete-time system in the finite-frequency domain with regional pole assignment. An optimized FD filter is designed such that: 1) the FD dynamics is quadratically D-stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H--norm. With the aid of the generalized Kalman-Yakubovich-Popov lemma, the mixed H--/H∞ performance and the D-stability requirement are guaranteed by solving a convex optimization problem. An iterative algorithm for designing the desired FD filter is proposed by evaluating the threshold on the generated residual function. A simulation result is exploited to illustrate the effectiveness of the proposed design technique.This work was supported in part by the Deanship of Scientific Research (DSR) at King Abdulaziz University in Saudi Arabia under Grant 16-135- 35-HiCi, the National Natural Science Foundation of China under Grants
61134009 and 61203139, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
The Effect of the Random Magnetic Field Component on the Parker Instability
The Parker instability is considered to play important roles in the evolution
of the interstellar medium. Most studies on the development of the instability
so far have been based on an initial equilibrium system with a uniform magnetic
field. However, the Galactic magnetic field possesses a random component in
addition to the mean uniform component, with comparable strength of the two
components. Parker and Jokipii have recently suggested that the random
component can suppress the growth of small wavelength perturbations. Here, we
extend their analysis by including gas pressure which was ignored in their
work, and study the stabilizing effect of the random component in the
interstellar gas with finite pressure. Following Parker and Jokipii, the
magnetic field is modeled as a mean azimuthal component, , plus a random
radial component, , where is a random function
of height from the equatorial plane. We show that for the observationally
suggested values of , the tension due to the random
component becomes important, so that the growth of the instability is either
significantly reduced or completely suppressed. When the instability still
works, the radial wavenumber of the most unstable mode is found to be zero.
That is, the instability is reduced to be effectively two-dimensional. We
discuss briefly the implications of our finding.Comment: 10 pages including 2 figures, to appear in The Astrophysical Journal
Letter
Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex
Munc13-1 is a large multifunctional protein essential for synaptic vesicle fusion and neurotransmitter release. Its dysfunction has been linked to many neurological disorders. Evidence suggests that the MUN domain of Munc13-1 collaborates with Munc18-1 to initiate SNARE assembly, thereby priming vesicles for fast calcium-triggered vesicle fusion. The underlying molecular mechanism, however, is poorly understood. Recently, it was found that Munc18-1 catalyzes neuronal SNARE assembly through an obligate template complex intermediate containing Munc18-1 and 2 SNARE proteins—syntaxin 1 and VAMP2. Here, using single-molecule force spectroscopy, we discovered that the MUN domain of Munc13-1 stabilizes the template complex by ∼2.1 kBT. The MUN-bound template complex enhances SNAP-25 binding to the templated SNAREs and subsequent full SNARE assembly. Mutational studies suggest that the MUN-bound template complex is functionally important for SNARE assembly and neurotransmitter release. Taken together, our observations provide a potential molecular mechanism by which Munc13-1 and Munc18-1 cooperatively chaperone SNARE folding and assembly, thereby regulating synaptic vesicle fusion
Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation
We analyze the dynamical expansion of the HII region, photodissociation
region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the
thermal and chemical processes in the time-dependent hydrodynamics code.
Following our previous paper, we investigate the time evolutions with various
ambient number densities and central stars. Our calculations show that basic
evolution is qualitatively similar among our models with different parameters.
The molecular gas is finally accumulated in the shell, and the gravitational
fragmentation of the shell is generally expected. The quantitative differences
among models are well understood with analytic scaling relations. The detailed
physical and chemical structure of the shell is mainly determined by the
incident FUV flux and the column density of the shell, which also follow the
scaling relations. The time of shell-fragmentation, and the mass of the
gathered molecular gas are sensitive tothe ambient number density. In the case
of the lower number density, the shell-fragmentation occurs over a longer
timescale, and the accumulated molecular gas is more massive. The variations
with different central stars are more moderate. The time of the
shell-fragmentation differs by a factor of several with the various stars of
M_* = 12-101 M_sun. According to our numerical results, we conclude that the
expanding HII region should be an efficient trigger for star formation in
molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap
A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity
To examine how non-uniform nature of the Galactic gravity might affect length
and time scales of the Parker instability, we took three models of gravity,
uniform, linear and realistic ones. To make comparisons of the three gravity
models on a common basis, we first fixed the ratio of magnetic pressure to gas
pressure at = 0.25, that of cosmic-ray pressure at = 0.4, and
the rms velocity of interstellar clouds at = 6.4 km s, and then
adjusted parameters of the gravity models in such a way that the resulting
density scale heights for the three models may all have the same value of 160
pc. Performing linear stability analyses onto equilibrium states under the
three models with the typical ISM conditions, we calculate the maximum growth
rate and corresponding length scale for each of the gravity models. Under the
uniform gravity the Parker instability has the growth time of 1.2
years and the length scale of 1.6 kpc for symmetric mode. Under the realistic
gravity it grows in 1.8 years for both symmetric and
antisymmetric modes, and develops density condensations at intervals of 400 pc
for the symmetric mode and 200 pc for the antisymmetric one. A simple change of
the gravity model has thus reduced the growth time by almost an order of
magnitude and its length scale by factors of four to eight. These results
suggest that an onset of the Parker instability in the ISM may not necessarily
be confined to the regions of high and .Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with
9 figure
A new model for the double well potential
A new model for the double well potential is presented in the paper. In the
new potential, the exchanging rate could be easily calculated by the
perturbation method in supersymmetric quantum mechanics. It gives good results
whether the barrier is high or sallow. The new model have many merits and may
be used in the double well problem.Comment: 3pages, 3figure
- …