33 research outputs found

    The psychometric properties of the quick inventory of depressive symptomatology-self-report (QIDS-SR) in patients with HBV-related liver disease

    Get PDF
    Background: Comorbid depression in Hepatitis B virus (HBV) is common. Developing accurate and time efficient tools to measure depressive symptoms in HBV is important for research and clinical practice in China. Aims: This study tested the psychometric properties of the Chinese version of the 16-item Quick Inventory of Depressive Symptomatology (QIDS-SR) in HBV patients. Methods: The study recruited 245 depressed patients with HBV and related liver disease. The severity of depressive symptoms was assessed with the Montgomery-Asberg Depression Rating Scale (MADRS) and the QIDS-SR. Results: Internal consistency (Cronbach’s alpha) was 0.796 for QIDS-SR. The QIDS-SR total score was significantly correlated with the MADRS total score (r=0.698, p. Conclusions: The QIDS-SR (Chinese version) has good psychometric properties in HBV patients and appears to be useful in assessing depression in clinical settings

    An Exploratory Quantitative Study into the Relationship between Catholic Affiliation and the Development of Social Entrepreneurship Education in the USA

    Get PDF
    Catholic educationalists have long stressed the role of Catholic universities in advancing the cause of social justice to counter the increasing commodification of business relationships and the lack of social responsibilities of the business world. Is this rhetoric or reality? In this empirical paper involving 501 USA universities that have an Association to Advance Collegiate Schools of Business (AACSB) accredited business school, we examine the relationship between Catholic affiliation and the universities’ decisions to offer social entrepreneurship and non-profit management courses to business students. Our study found that universities with Catholic affiliation are significantly more likely to offer both non-profit management and social entrepreneurship courses to business students. Our results offer evidences that Catholic universities are indeed working towards making a difference, with the vision and flexibility to do so

    Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance.

    Get PDF
    The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts

    Anticancer Activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic Acid (THA), a Novel Triterpenoid Isolated from Sinojackia sarcocarpa

    Get PDF
    BACKGROUND: Natural products represent an important source for agents of cancer prevention and cancer treatment. More than 60% of conventional anticancer drugs are derived from natural sources, particularly from plant-derived materials. In this study, 2α, 3α, 19β, 23β-tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid from the leaves of Sinojackia sarcocarpa, was isolated, and its anticancer activity was investigated both in vitro and in vivo. PRINCIPAL FINDINGS: THA possessed potent tumor selected toxicity in vitro. It exhibited significantly higher cytotoxicity to the cancer cell lines A2780 and HepG2 than to IOSE144 and QSG7701, two noncancerous cell lines derived from ovary epithelium and liver, respectively. Moreover, THA showed a dose-dependent inhibitory effect on A2780 ovary tumor growth in vivo in nude mice. THA induced a dose-dependent apoptosis and G2/M cell cycle arrest in A2780 and HepG2 cells. The THA-induced cell cycle arrest was accompanied by a downregulation of Cdc2. The apoptosis induced by THA was evident by induction of DNA fragmentation, release of cytoplasmic Cytochrome c from mitochondria, activation of caspases, downregulation of Bcl-2 and upregulation of Bax. CONCLUSION: The primary data indicated that THA exhibit a high toxicity toward two cancer cells than their respective non-cancerous counterparts and has a significant anticancer activity both in vitro and in vivo. Thus, THA and/or its derivatives may have great potential in the prevention and treatment of human ovary tumors and other malignancies

    The 5-Hydroxymethylcytosine Landscape of Prostate Cancer

    Get PDF
    Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.publishedVersionPeer reviewe

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    corecore