3,255 research outputs found
Development of heat flux sensors in turbine airfoils
The objective is to develop heat flux sensors suitable for use on turbine airfoils and to verify the operation of the heat flux measurement techniques through laboratory experiments. The requirements for a program to investigate the measurement of heat flux on airfoils in areas of strong non-one-dimensional flow were also identified
Advanced high temperature heat flux sensors
To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development
Characterisation of porous solids using small-angle scattering and NMR cryoporometry
The characteristics of several porous systems have been studied by the use of small-angle neutron scattering [SANS] and nuclear magnetic resonance [NMR] techniques. The measurements reveal different characteristics for sol-gel silicas, activated carbons and ordered mesoporous silicas of the MCM and SBA type. Good agreement is obtained between gas adsorption measurements and the NMR and SANS results for pore sizes above 10 nm. Recent measurements of the water/ice phase transformation in SBA silicas by neutron diffraction are also presented and indicate a complex relationship that will require more detailed treatment in terms of the possible effects of microporosity in the silica substrate. The complementarity of the different methods is emphasised and there is brief discussion of issues related to possible future developments
Turbine blade and vane heat flux sensor development, phase 2
The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction
Magneto-x-ray effects in transition-metal alloys
We present a theory that combines the relativistic spin-polarized version of the Koringa-Kohn-Rostoker coherent-potential approximation theory and the macroscopic theory of magneto-optical effects enabling us to calculate magneto-x-ray effects from first principles. The theory is illustrated by calculation of Faraday and Kerr rotations and ellipticities for transition-metal alloys
Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements
The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles
Development of advanced high-temperature heat flux sensors
Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application
Nuclear magnetic resonance cryoporometry
Nuclear Magnetic Resonance (NMR) cryoporometry is a technique for non-destructively determining pore size distributions in porous media through the observation of the depressed melting point of a confined liquid. It is suitable for measuring pore diameters in the range 2 nm-1 mu m, depending on the absorbate. Whilst NMR cryoporometry is a perturbative measurement, the results are independent of spin interactions at the pore surface and so can offer direct measurements of pore volume as a function of pore diameter. Pore size distributions obtained with NMR cryoporometry have been shown to compare favourably with those from other methods such as gas adsorption, DSC thermoporosimetry, and SANS. The applications of NMR cryoporometry include studies of silica gels, bones, cements, rocks and many other porous materials. It is also possible to adapt the basic experiment to provide structural resolution in spatially-dependent pore size distributions, or behavioural information about the confined liquid
Formation and properties of metal-oxygen atomic chains
Suspended chains consisting of single noble metal and oxygen atoms have been
formed. We provide evidence that oxygen can react with and be incorporated into
metallic one-dimensional atomic chains. Oxygen incorporation reinforces the
linear bonds in the chain, which facilitates the creation of longer atomic
chains. The mechanical and electrical properties of these diatomic chains have
been investigated by determining local vibration modes of the chain and by
measuring the dependence of the average chain-conductance on the length of the
chain. Additionally, we have performed calculations that give insight in the
physical mechanism of the oxygen-induced strengthening of the linear bonds and
the conductance of the metal-oxygen chains.Comment: 10 pages, 9 fig
- …
