6,504 research outputs found

    Culture Techniques for Rearing Soil Anthropods

    Get PDF
    Excerpt: Interest in soil biology has been prompted by recent investigations into the action of insecticides on plants and animals. Observations in the field must be supplemented by laboratory investigations conducted under controlled conditions. Consequently, it becomes necessary to rear and handle soil animals under artificial situations for bio-assay and life cycle studies. When large numbers of individuals are required, special problems in maintenance and manipulation arise. Relatively inexpensive and simple methods for such projects are essential and this paper describes some of those techniques which we have found expedient

    Observations of attenuation at 20.6, 31.65 and 90.0 GHz: Preliminary results from Wallops Island, VA

    Get PDF
    Ground based radiometric observations of atmospheric attenuation at 20.6, 31.65, and 90.0 GHz were made at Wallops Island, Virginia during April and May 1989. Early results from the analysis of the data set are compared with previous observations from California and Colorado. The relative attenuation ratios observed at each frequency during clear, cloudy, and rainy conditions are shown. Plans for complete analysis of the data are described

    Multidimensional measurement within adult protective services: design and initial testing of the tool for risk, interventions, and outcomes.

    Get PDF
    This study describes the development, field utility, reliability, and validity of the multidimensional Tool for Risk, Interventions, and Outcomes (TRIO) for use in Adult Protective Services (APS). The TRIO is designed to facilitate consistent APS practice and collect data related to multiple dimensions of typical interactions with APS clients, including the investigation and assessment of risks, the provision of APS interventions, and associated health and safety outcomes. Initial tests of the TRIO indicated high field utility, social worker "relevance and buy-in," and inter-rater reliability. TRIO concurrent validity was demonstrated via appropriate patterns of TRIO item differentiation based on the type of observed confirmed abuse or neglect; and predictive validity was demonstrated by prediction of the risk of actual APS recurrence. The TRIO is a promising new tool that can help meet the challenges of providing and documenting effective APS practices and identifying those at high risk for future APS recurrence

    Transient interference of transmission and incidence

    Get PDF
    Due to a transient quantum interference during a wavepacket collision with a potential barrier, a particular momentum, that depends on the potential parameters but is close to the initial average momentum, becomes suppressed. The hole left pushes the momentum distribution outwards leading to a significant constructive enhancement of lower and higher momenta. This is explained in the momentum complex-plane language in terms of a saddle point and two contiguous ``structural'' poles, which are not associated with resonances but with incident and transmitted components of the wavefunction.Comment: 4 pages of text, 6 postscript figures, revte

    Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique

    Full text link
    With an aim to examine whether the predicted solar gravitational redshift can be observationally confirmed under the influence of the convective Doppler shift due to granular motions, we attempted measuring the absolute spectral line-shifts on a large number of points over the solar disk based on an extensive set of 5188-5212A region spectra taken through an iodine-cell with the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric line shifts at the meridian line (where no rotational shift exists), which were derived by finding the best-fit parameterized model spectrum with the observed spectrum and corrected for the earth's motion, turned out to be weakly position-dependent as ~ +400 m/s near the disk center and increasing toward the limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s). Interestingly, this trend tends to disappear when the convectiveshift due to granular motions (~-300 m/s at the disk center and increasing toward the limb; simulated based on the two-component model along with the empirical center-to-limb variation) is subtracted, finally resulting in the averaged shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the absolute wavelength calibration or in the correction due to convective Doppler shifts (at least several tens m/s, or more likely up to <~100 m/s), we may regard that this value is well consistent with the expected gravitational redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3, table 4, ReadMe); accepted for publication in Solar Physic

    Classical Limit of Demagnetization in a Field Gradient

    Full text link
    We calculate the rate of decrease of the expectation value of the transverse component of spin for spin-1/2 particles in a magnetic field with a spatial gradient, to determine the conditions under which a previous classical description is valid. A density matrix treatment is required for two reasons. The first arises because the particles initially are not in a pure state due to thermal motion. The second reason is that each particle interacts with the magnetic field and the other particles, with the latter taken to be via a 2-body central force. The equations for the 1-body Wigner distribution functions are written in a general manner, and the places where quantum mechanical effects can play a role are identified. One that may not have been considered previously concerns the momentum associated with the magnetic field gradient, which is proportional to the time integral of the gradient. Its relative magnitude compared with the important momenta in the problem is a significant parameter, and if their ratio is not small some non-classical effects contribute to the solution. Assuming the field gradient is sufficiently small, and a number of other inequalities are satisfied involving the mean wavelength, range of the force, and the mean separation between particles, we solve the integro- partial differential equations for the Wigner functions to second order in the strength of the gradient. When the same reasoning is applied to a different problem with no field gradient, but having instead a gradient to the z-component of polarization, the connection with the diffusion coefficient is established, and we find agreement with the classical result for the rate of decrease of the transverse component of magnetization.Comment: 22 pages, no figure

    Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment

    Get PDF
    In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation

    Space-time versus particle-hole symmetry in quantum Enskog equations

    Get PDF
    The non-local scattering-in and -out integrals of the Enskog equation have reversed displacements of colliding particles reflecting that the -in and -out processes are conjugated by the space and time inversions. Generalisations of the Enskog equation to Fermi liquid systems are hindered by a request of the particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of the optical theorem. It is found that space-time and particle-hole symmetry can only be fulfilled simultaneously for the Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form allows only for particle-hole symmetry but not for space-time symmetry due to a stimulated emission of Bosons
    corecore