242 research outputs found
Introducing robustness to maximum-likelihood refinement of electron-microsopy data
An expectation-maximization algorithm for maximum-likelihood refinement of electron-microscopy data is presented that is based on finite mixtures of multivariate t-distributions. Compared with the conventionally employed Gaussian mixture model, the t-distribution provides robustness against outliers in the data
A graph neural network approach to automated model building in cryo-EM maps
Electron cryo-microscopy (cryo-EM) produces three-dimensional (3D) maps of
the electrostatic potential of biological macromolecules, including proteins.
Along with knowledge about the imaged molecules, cryo-EM maps allow de novo
atomic modelling, which is typically done through a laborious manual process.
Taking inspiration from recent advances in machine learning applications to
protein structure prediction, we propose a graph neural network (GNN) approach
for automated model building of proteins in cryo-EM maps. The GNN acts on a
graph with nodes assigned to individual amino acids and edges representing the
protein chain. Combining information from the voxel-based cryo-EM data, the
amino acid sequence data and prior knowledge about protein geometries, the GNN
refines the geometry of the protein chain and classifies the amino acids for
each of its nodes. Application to 28 test cases shows that our approach
outperforms the state-of-the-art and approximates manual building for cryo-EM
maps with resolutions better than 3.5 \r{A}
Prediction accuracy of fatigue-relevant load effects in an orthotropic deck
The accuracy of stress estimates in Orthotropic Bridge Decks (OBD) may be negatively impacted by the complex load transfer and asphalt properties. Yet, accurate stress estimates are crucial for optimal fatigue verifications. A field measurement and modelling study has been conducted to evaluate the accuracy of finite element (FE) models. The level of detail of the FE model resembled engineering practice. Measurements comprised of strains caused by normal flowing traffic and by single vehicles with known load. The study gave insight into the distribution of the transverse vehicle location, dynamic vehicle–bridge deck interaction, and the asphalt influence. Comparing with international guidelines, the prediction error of FE models of OBDs is on the edge of acceptable.<br/
Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution
Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies
Automated model building and protein identification in cryo-EM maps
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics program
Інноваційна активність підприємств України: технологічний аспект
Hazard assessment of chemicals and pharmaceuticals is increasingly gaining from knowledge about molecular mechanisms of toxic action acquired in dedicated in vitro assays. We have developed an efficient human embryonic stem cell neural differentiation test (hESTn) that allows the study of the molecular interaction of compounds with the neural differentiation process. Within the 11-day differentiation protocol of the assay, embryonic stem cells lost their pluripotency, evidenced by the reduced expression of stem cell markers Pou5F1 and Nanog. Moreover, stem cells differentiated into neural cells, with morphologically visible neural structures together with increased expression of neural differentiation-related genes such as beta III-tubulin, Map2, Neurogin1, Mapt and Reelin. Valproic acid (VPA) and carbamazepine (CBZ) exposure during hESTn differentiation led to concentration-dependent reduced expression of beta III-tubulin, Neurogin1 and Reelin. In parallel VPA caused an increased gene expression of Map2 and Mapt which is possibly related to the neural protective effect of VPA. These findings illustrate the added value of gene expression analysis for detecting compound specific effects in hESTn. Our findings were in line with and could explain effects observed in animal studies. This study demonstrates the potential of this assay protocol for mechanistic analysis of specific compound-induced inhibition of human neural cell differentiation. (c) 2014 Elsevier Ltd. All rights reserved
Optimization problems in electron microscopy of single particles
The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-006-0078-8Electron Microscopy is a valuable tool for the elucidation of the three-dimensional structure of macromolecular complexes. Knowledge about the macromolecular structure provides important information about its function and how it is carried out. This work addresses the issue of three-dimensional reconstruction of biological macromolecules from electron microscopy images. In particular, it focuses on a methodology known as “single-particles” and makes a thorough review of all those steps that can be expressed as an optimization problem. In spite of important advances in recent years, there are still unresolved challenges in the field that offer an excellent testbed for new and more powerful optimization techniques.We acknowledge partial support from the “Comunidad Autónoma de Madrid” through
grants CAM-07B-0032-2002, GR/SAL/0653/2004 and GR/SAL/0342/2004, the “Comisión Interministerial de
Ciencia yTecnologia” of Spain through grants BIO2001-1237, BIO2001-4253-E, BIO2001-4339-E, BIO2002-
10855-E, BFU2004-00217/BMC, the Spanish FIS grant (G03/185), the European Union through grants QLK2-
2000-00634, QLRI-2000-31237, QLRT-2000-0136, QLRI-2001-00015, FP6-502828 and the NIH through
grant HL70472. Alberto Pascual and Roberto Marabini acknowledge support by the Spanish Ramon y Cajal
Program
The effect of charge and albumin on cellular uptake of supramolecular polymer nanostructures
Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple “mix-and-match” method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.</p
Structure and uncoating of immature adenovirus
Maturation via proteolytical processing is a common trait in the viral world, and is
often accompanied by large conformational changes and rearrangements in the capsid.
The adenovirus protease has been shown to play a dual role in the viral infectious
cycle: (a) in maturation, as viral assembly starts with precursors to several of the
structural proteins, but ends with proteolytically processed versions in the mature
virion; and (b) in entry, because protease-impaired viruses have difficulties in
endosome escape and uncoating. Indeed, viruses that have not undergone proteolytical
processing are not infectious. We present the 3D structure of immature adenovirus
particles, as represented by the thermosensitive mutant Ad2 ts1 grown under nonpermissive
conditions, and compare it with the mature capsid. Our 3DEM maps at
subnanometer resolution indicate that adenovirus maturation does not involve large
scale conformational changes in the capsid. Difference maps reveal the location of
unprocessed peptides pIIIa and pVI and help to define their role in capsid assembly
and maturation. An intriguing difference appears in the core, indicating a more
compact organization and increased stability of the immature cores. We have further
investigated these properties by in vitro disassembly assays. Fluorescence and
electron microscopy experiments reveal differences in the stability and uncoating of
immature viruses, both at the capsid and core levels, as well as disassembly
intermediates not previously imaged.This work was supported by grants from the Ministerio de Ciencia e Innovación of Spain (BFU2007-60228 to C.S.M. and BIO2007-67150-C03-03 to R.M.), the Comunidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas (CCG08-CSIC/SAL-3442 to C.S.M.) and the National Institutes of Health (5R01CA111569 to D.T.C., R0141599 to W.F.M. and GM037705 to S.J.F.). R.M.-C. is a recipient of a PFIS fellowship from the Instituto de Salud Carlos III of Spain. A.J.P.-B. holds a CSIC JAE-Doc postdoctoral position, partially funded by the European Social FundPeer reviewe
- …