1,934 research outputs found
Homogeneous bubble nucleation limit of mercury under the normal working conditions of the planned European Spallation Source
In spallation neutron sources, liquid mercury is the subject of big thermal
and pressure shocks, upon adsorbing the proton beam. These changes can cause
unstable bubbles in the liquid, which can damage the structural material. While
there are methods to deal with the pressure shock, the local temperature shock
cannot be avoided. In our paper we calculated the work of the critical cluster
formation (i.e. for mercury micro-bubbles) together with the rate of their
formation (nucleation rate). It is shown that the homogeneous nucleation rates
are very low even after adsorbing several proton pulses, therefore the
probability of temperature induced homogeneous bubble nucleation is negligible.Comment: 22 Pages, 11 figures, one of them is colour, we plan to publish it in
Eur. Phys. J.
Updating the QR decomposition of block tridiagonal and block Hessenberg matrices
Abstract We present an efficient block-wise update scheme for the QR decomposition of block tridiagonal and block Hessenberg matrices. For example, such matrices come up in generalizations of the Krylov space solvers MinRes, SymmLQ, GMRes, and QMR to block methods for linear systems of equations with multiple right-hand sides. In the non-block case it is very efficient (and, in fact, standard) to use Givens rotations for these QR decompositions. Normally, the same approach is also used with column-wise updates in the block case. However, we show that, even for small block sizes, block-wise updates using (in general, complex) Householder reflections instead of Givens rotations are far more efficient in this case, in particular if the unitary transformations that incorporate the reflections determined by a whole block are computed explicitly. Naturally, the bigger the block size the bigger the savings. We discuss the somewhat complicated algorithmic details of this block-wise update, and present numerical experiments on accuracy and timing for the various options (Givens vs. Householder, block-wise vs. column-wise update, explicit vs. implicit computation of unitary transformations). Our treatment allows variable block sizes and can be adapted to block Hessenberg matrices that do not have the special structure encountered in the above mentioned block Krylov space solvers
Capillary pressure of van der Waals liquid nanodrops
The dependence of the surface tension on a nanodrop radius is important for
the new-phase formation process. It is demonstrated that the famous Tolman
formula is not unique and the size-dependence of the surface tension can
distinct for different systems. The analysis is based on a relationship between
the surface tension and disjoining pressure in nanodrops. It is shown that the
van der Waals interactions do not affect the new-phase formation thermodynamics
since the effect of the disjoining pressure and size-dependent component of the
surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano
Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities
The 2-parameter family of massive variants of Einstein's gravity (on a
Minkowski background) found by Ogievetsky and Polubarinov by excluding lower
spins can also be derived using universal coupling. A Dirac-Bergmann
constrained dynamics analysis seems not to have been presented for these
theories, the Freund-Maheshwari-Schonberg special case, or any other massive
gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here
the Dirac-Bergmann apparatus is applied to these theories. A few remarks are
made on the question of positive energy. Being bimetric, massive gravities have
a causality puzzle, but it appears soluble by the introduction and judicious
use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200
Elastin is heterogeneously cross-linked
Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure
Asymptotic analysis of the model for distribution of high-tax payers
The z-transform technique is used to investigate the model for distribution
of high-tax payers, which is proposed by two of the authors (K. Y and S. M) and
others. Our analysis shows an asymptotic power-law of this model with the
exponent -5/2 when a total ``mass'' has a certain critical value. Below the
critical value, the system exhibits an ordinary critical behavior, and scaling
relations hold. Above the threshold, numerical simulations show that a
power-law distribution coexists with a huge ``monopolized'' member. It is
argued that these behaviors are observed universally in conserved aggregation
processes, by analizing an extended model.Comment: 5pages, 3figure
Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts
[EN] Polyelectrolyte multilayers (PEMs) consisting of the polysaccharides hyaluronic acid (HA) as the polyanion and chitosan (Chi) as the polycation were prepared with layer-by-layer technique (LbL). The [Chi/HA](5) multilayers were exposed to solutions of metal ions (Ca2+, Co2+, Cu2+ and Fe3+). Binding of metal ions to [Chi/HA](5) multilayers by the formation of complexes with functional groups of polysaccharides modulates their physical properties and the bioactivity of PEMs with regard to the adhesion and function of multipotent murine C3H10T1/2 embryonic fibroblasts. Characterization of multilayer formation and surface properties using different analytical methods demonstrates changes in the wetting, surface potential and mechanical properties of multilayers depending on the concentration and type of metal ion. Most interestingly, it is observed that Fe3+ metal ions greatly promote adhesion and spreading of C3H10T1/2 cells on the low adhesive [Chi/HA](5) PEM system. The application of intermediate concentrations of Cu2+, Ca2+ and Co2+ as well as low concentrations of Fe3+ to PEMs also results in increased cell spreading. Moreover, it can be shown that complex formation of PEMs with Cu2+ and Fe3+ ions leads to increased metabolic activity in cells after 24 h and induces cell differentiation towards adipocytes in the absence of any additional adipogenic media supplements. Overall, complex formation of [Chi/HA](5) PEM with metal ions like Cu2+ and Fe3+ represents an interesting and cheap alternative to the use of growth factors for making cell-adhesive coatings and guiding stem cell differentiation on implants and scaffolds to regenerate connective-type of tissues.This work was part of the High-Performance Center Chemical and Biosystems Technology Halle/Leipzig, supported by the European Regional Development Fund (ERDF), and a grant to HK from the Martin Luther University Halle-Wittenberg for female PhD students. The work was further supported by the Fraunhofer Internal Programs under Grant No. Attract 069-608203 (CEHS). TG acknowledges the kind support by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers ``Digital biodesign and personalized healthcare'' 075-15-2020926. GGF acknowledges funding by the State Research Agency. Ministry of Science and Innovation of Spain, grant PID2019106000RB-C21/AEI/10.13039/501100011033 project. We are grateful for the kind support by Christian Willems for the help in formatting and proof reading the manuscript.Kindi, H.; Menzel, M.; Heilmann, A.; Schmelzer, CEH.; Herzberg, M.; Fuhrmann, B.; Gallego-Ferrer, G.... (2021). Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts. Soft Matter. 17(36):8394-8410. https://doi.org/10.1039/d1sm00405k83948410173
Non-equilibrium Thermodynamics: Structural Relaxation, Fictive temperature and Tool-Narayanaswamy phenomenology in Glasses
Starting from the second law of thermodynamics applied to an isolated system
consisting of the system surrounded by an extremely large medium, we formulate
a general non-equilibrium thermodynamic description of the system when it is
out of equilibrium. We then apply it to study the structural relaxation in
glasses and establish the phenomenology behind the concept of the fictive
temperature and of the empirical Tool-Narayanaswamy equation on firmer
theoretical foundation.Comment: 20 pages, 1 figur
Different Transport Pathways of Individual Precursor Proteins in Mitochondria
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cellfree reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase.
Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1–10 μM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1–3 pmol × min−1× (mg mitochondrial protein)−1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 104 did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c.
These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria as a first step in the transport process
- …