3,850 research outputs found
On the temperature dependence of the interaction-induced entanglement
Both direct and indirect weak nonresonant interactions are shown to produce
entanglement between two initially disentangled systems prepared as a tensor
product of thermal states, provided the initial temperature is sufficiently
low. Entanglement is determined by the Peres-Horodeckii criterion, which
establishes that a composite state is entangled if its partial transpose is not
positive. If the initial temperature of the thermal states is higher than an
upper critical value the minimal eigenvalue of the partially
transposed density matrix of the composite state remains positive in the course
of the evolution. If the initial temperature of the thermal states is lower
than a lower critical value the minimal eigenvalue of the
partially transposed density matrix of the composite state becomes negative
which means that entanglement develops. We calculate the lower bound
for and show that the negativity of the composite state is negligibly
small in the interval . Therefore the lower bound temperature
can be considered as \textit{the} critical temperature for the
generation of entanglement.Comment: 27 pages and 7 figure
Direct Measurement of intermediate-range Casimir-Polder potentials
We present the first direct measurements of Casimir-Polder forces between
solid surfaces and atomic gases in the transition regime between the
electrostatic short-distance and the retarded long-distance limit. The
experimental method is based on ultracold ground-state Rb atoms that are
reflected from evanescent wave barriers at the surface of a dielectric glass
prism. Our novel approach does not require assumptions about the potential
shape. The experimental data confirm the theoretical prediction in the
transition regime.Comment: 4 pages, 3 figure
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Casimir forces from a loop integral formulation
We reformulate the Casimir force in the presence of a non-trivial background.
The force may be written in terms of loop variables, the loop being a curve
around the scattering sites. A natural path ordering of exponentials take place
when a particular representation of the scattering centres is given. The basic
object to be evaluated is a reduced (or abbreviated) classical pseudo-action
that can be operator valued.Comment: references added, text clarified in place
Characterization of the domain chaos convection state by the largest Lyapunov exponent
Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic boundary conditions, we have computed the value of the largest Lyapunov exponent lambda1 for a variety of aspect ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare our results with those from Egolf et al., [Nature 404, 733 (2000)], who suggested that the value of lambda1 for the spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from short-lived, spatially localized dislocation nucleation events. We also show that the quantity lambda1 is not intensive for aspect ratios Gamma over the range 20<Gamma<40 and that the scaling exponent of lambda1 near onset is consistent with the value predicted by the amplitude equation formalism
Quantum estimation of a damping constant
We discuss an interferometric approach to the estimation of quantum
mechanical damping. We study specific classes of entangled and separable probe
states consisting of superpositions of coherent states. Based on the assumption
of limited quantum resources we show that entanglement improves the estimation
of an unknown damping constant.Comment: 7 pages, 5 figure
Explicit solution of the linearized Einstein equations in TT gauge for all multipoles
We write out the explicit form of the metric for a linearized gravitational
wave in the transverse-traceless gauge for any multipole, thus generalizing the
well-known quadrupole solution of Teukolsky. The solution is derived using the
generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to
appear in Class. Quantum Gra
Entanglement dynamics in a non-Markovian environment: an exactly solvable model
We study the non-Markovian effects on the dynamics of entanglement in an
exactly-solvable model that involves two independent oscillators each coupled
to its own stochastic noise source. First, we develop Lie algebraic and
functional integral methods to find an exact solution to the single-oscillator
problem which includes an analytic expression for the density matrix and the
complete statistics, i.e., the probability distribution functions for
observables. For long bath time-correlations, we see non-monotonic evolution of
the uncertainties in observables. Further, we extend this exact solution to the
two-particle problem and find the dynamics of entanglement in a subspace. We
find the phenomena of `sudden death' and `rebirth' of entanglement.
Interestingly, all memory effects enter via the functional form of the energy
and hence the time of death and rebirth is controlled by the amount of noisy
energy added into each oscillator. If this energy increases above (decreases
below) a threshold, we obtain sudden death (rebirth) of entanglement.Comment: 11 pages, 4 figures; revision for PR
Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism
We describe a general procedure to generate spinning, precessing waveforms
that include inspiral, merger and ringdown stages in the effective-one-body
(EOB) approach. The procedure uses a precessing frame in which
precession-induced amplitude and phase modulations are minimized, and an
inertial frame, aligned with the spin of the final black hole, in which we
carry out the matching of the inspiral-plunge to merger-ringdown waveforms. As
a first application, we build spinning, precessing EOB waveforms for the
gravitational modes l=2 such that in the nonprecessing limit those waveforms
agree with the EOB waveforms recently calibrated to numerical-relativity
waveforms. Without recalibrating the EOB model, we then compare EOB and
post-Newtonian precessing waveforms to two numerical-relativity waveforms
produced by the Caltech-Cornell-CITA collaboration. The numerical waveforms are
strongly precessing and have 35 and 65 gravitational-wave cycles. We find a
remarkable agreement between EOB and numerical-relativity precessing waveforms
and spins' evolutions. The phase difference is ~ 0.2 rad at merger, while the
mismatches, computed using the advanced-LIGO noise spectral density, are below
2% when maximizing only on the time and phase at coalescence and on the
polarization angle.Comment: 17 pages, 10 figure
- …
