114 research outputs found
Global warming will affect the maximum potential abundance of boreal plant species
Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%âquantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperatureâonly models and in allâpredictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041â2070 under the IPCC A1B emission scenario using temperatureâonly models. We predict major potential changes in abundance and average northward distribution shifts of 6â8âkmâyrâ1. Our results emphasize interâspecific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the âmaximum potential abundanceâ to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.202
Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs
Understanding marine ecosystem structure and functioning is crucial in supporting sustainable management of natural resources and monitoring the health of marine ecosystems. The current study utilized stable isotope (SI) mixing models and trophic position models to examine energy flow, trophic relationships, and benthic-pelagic coupling between food web components. Roughly 1900 samples from different trophic levels in the food web, collected during 2001-2010 from four northern and central sub-basins of the Baltic Sea, were analyzed for SI ratios of carbon and nitrogen. Trophic structure of the food webs among the sub-basins was consistent, but there were differences between the proportions of energy in different trophic levels that had originated from the benthic habitat. Mysids and amphipods served as important links between the benthic and pelagic ecosystems. Much (35-65%) of their energy originated from the benthic zone but was transferred to higher trophic levels in the pelagic food web by consumption by herring (Clupea harengus). One percent to twenty-four percent of the energy consumption of apex seal predators (Halichoerus grypus and Pusa hispida) and predatory fish (Salmo salar) was derived from benthic zone. Diets of mysids and amphipods differed, although some overlap in their dietary niches was observed. The food web in the Gulf of Finland was more influenced by the benthic subsystem than food webs in the other sub-basins. The baseline levels of delta C-13 and delta N-15 differed between sub-basins of the Baltic Sea, indicating differences in the input of organic matter and nutrients to each sub-basin.peerReviewe
Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis
For many coastal areas of the world, a decrease in abundance and depth penetration of perennial macroalgae and seagrasses has been documented and attributed to eutrophication. A surplus of nutrients impairs perennial seaweeds in at least two ways: increased phytoplankton densities reduce the depth penetration of light and in addition filamentous seaweeds and microalgae growing epiphytically shade their perennial hosts. A reduction of depth limit and total abundance has also been observed for the brown seaweed Fucus vesiculosus at many sites in the Baltic Sea. However, in most cases the mechanistic reason for the loss of Fucus has been deduced from observations rather than from experimental evidence. Here, we present results of a two-factorial (water depth/light supply and epibionts) experiment that was run in the Kiel Fjord, western Baltic, from August to October 2005. Performance of F. vesiculosus was recorded by growth and chlorophyll measurements, PI-curves and in situ measurements of the photosynthetic activity as the relative rate of electron transport (rETR). rETR and growth decreased with water depth. Chlorophyll a concentrations increased with reduced light intensities, but this apparently could not compensate for the light deficiency. Epibionts enhanced the negative effect of reduced light conditions on growth. According to these findings we estimated the physiological depth limit of F. vesiculosus in the Kiel Fjord to lie between 4 and 6 m water depth
Current state of terrestrial ecosystems in the joint Norwegian, Russian and Finnish border area
Appendix 15/15 of the publication "State of the environment in the Norwegian, Finnish and Russian border area 2007" (The Finnish Environment 6/2007)
Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach
Climate change reshuffles northern species within their niches
Climate change is a pervasive threat to biodiversity. While range shifts are a known consequence of climate warming contributing to regional community change, less is known about how species' positions shift within their climatic niches. Furthermore, whether the relative importance of different climatic variables prompting such shifts varies with changing climate remains unclear. Here we analysed four decades of data for 1,478 species of birds, mammals, butterflies, moths, plants and phytoplankton along a 1,200 km high latitudinal gradient. The relative importance of climatic drivers varied non-uniformly with progressing climate change. While species turnover among decades was limited, the relative position of species within their climatic niche shifted substantially. A greater proportion of species responded to climatic change at higher latitudes, where changes were stronger. These diverging climate imprints restructure a full biome, making it difficult to generalize biodiversity responses and raising concerns about ecosystem integrity in the face of accelerating climate change.The authors analyse four decades of distribution data for various taxonomic groups to understand the shift of species within their climatic niches and the changing influences of different climate factors. The diverse and diverging climate imprints raise concerns about future ecosystem integrity.</p
- âŠ