607 research outputs found
Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species
Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’) and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyse the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16ºC (P16D10 or control); CL with a constant temperature of 23ºC (P24D0); CL with a variable temperature of 26/16ºC (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm
Assessment of female sex as a risk factor in atrial fibrillation in Sweden: nationwide retrospective cohort study
Objective To determine whether women with atrial fibrillation have a higher risk of stroke than men
Geometrical theory of diffraction and spectral statistics
We investigate the influence of diffraction on the statistics of energy
levels in quantum systems with a chaotic classical limit. By applying the
geometrical theory of diffraction we show that diffraction on singularities of
the potential can lead to modifications in semiclassical approximations for
spectral statistics that persist in the semiclassical limit . This
result is obtained by deriving a classical sum rule for trajectories that
connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.
Spectral statistics in chaotic systems with a point interaction
We consider quantum systems with a chaotic classical limit that are perturbed
by a point-like scatterer. The spectral form factor K(tau) for these systems is
evaluated semiclassically in terms of periodic and diffractive orbits. It is
shown for order tau^2 and tau^3 that off-diagonal contributions to the form
factor which involve diffractive orbits cancel exactly the diagonal
contributions from diffractive orbits, implying that the perturbation by the
scatterer does not change the spectral statistic. We further show that
parametric spectral statistics for these systems are universal for small
changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde
Classical, semiclassical, and quantum investigations of the 4-sphere scattering system
A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering
system, is investigated with classical, semiclassical, and quantum mechanical
methods at various center-to-center separations of the spheres. The efficiency
and scaling properties of the computations are discussed by comparisons to the
two-dimensional 3-disk system. While in systems with few degrees of freedom
modern quantum calculations are, in general, numerically more efficient than
semiclassical methods, this situation can be reversed with increasing dimension
of the problem. For the 4-sphere system with large separations between the
spheres, we demonstrate the superiority of semiclassical versus quantum
calculations, i.e., semiclassical resonances can easily be obtained even in
energy regions which are unattainable with the currently available quantum
techniques. The 4-sphere system with touching spheres is a challenging problem
for both quantum and semiclassical techniques. Here, semiclassical resonances
are obtained via harmonic inversion of a cross-correlated periodic orbit
signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Small Disks and Semiclassical Resonances
We study the effect on quantum spectra of the existence of small circular
disks in a billiard system. In the limit where the disk radii vanish there is
no effect, however this limit is approached very slowly so that even very small
radii have comparatively large effects. We include diffractive orbits which
scatter off the small disks in the periodic orbit expansion. This situation is
formally similar to edge diffraction except that the disk radii introduce a
length scale in the problem such that for wave lengths smaller than the order
of the disk radius we recover the usual semi-classical approximation; however,
for wave lengths larger than the order of the disk radius there is a
qualitatively different behaviour. We test the theory by successfully
estimating the positions of scattering resonances in geometries consisting of
three and four small disks.Comment: Final published version - some changes in the discussion and the
labels on one figure are correcte
Periodic orbit quantization of the Sinai billiard in the small scatterer limit
We consider the semiclassical quantization of the Sinai billiard for disk
radii R small compared to the wave length 2 pi/k. Via the application of the
periodic orbit theory of diffraction we derive the semiclassical spectral
determinant. The limitations of the derived determinant are studied by
comparing it to the exact KKR determinant, which we generalize here for the A_1
subspace. With the help of the Ewald resummation method developed for the full
KKR determinant we transfer the complex diffractive determinant to a real form.
The real zeros of the determinant are the quantum eigenvalues in semiclassical
approximation. The essential parameter is the strength of the scatterer
c=J_0(kR)/Y_0(kR). Surprisingly, this can take any value between plus and minus
infinity within the range of validity of the diffractive approximation kR <<4.
We study the statistics exhibited by spectra for fixed values of c. It is
Poissonian for |c|=infinity, provided the disk is placed inside a rectangle
whose sides obeys some constraints. For c=0 we find a good agreement of the
level spacing distribution with GOE, whereas the form factor and two-point
correlation function are similar but exhibit larger deviations. By varying the
parameter c from 0 to infinity the level statistics interpolates smoothly
between these limiting cases.Comment: 17 pages LaTeX, 5 postscript figures, submitted to J. Phys. A: Math.
Ge
Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance
The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms
- …