8 research outputs found

    Effect of Multiple Impacts on the Deformation of Wear-Resistant Steels

    Get PDF
    Funder: Danmarks Tekniske Universitet; doi: http://dx.doi.org/10.13039/501100005192Abstract: The effect of the relative timing between pairs of same-polarity monophasic pulses has been studied extensively in single-neuron animal studies and has revealed fundamental properties of the neurons. For human cochlear implant listeners, the requirement to use charge-balanced stimulation and the typical use of symmetric, biphasic pulses limits such measures, because currents of opposite polarities interact at the level of the neural membrane. Here, we propose a paradigm to study same-polarity summation of currents while keeping the stimulation charge-balanced within a short time window. We used pairs of mirrored pseudo-monophasic pulses (a long-low phase followed by a short-high phase for the first pulse and a short-high phase followed by a long-low phase for the second pulse). We assumed that most of the excitation would stem from the two adjacent short-high phases, which had the same polarity. The inter-pulse interval between the short-high phases was varied from 0 to 345 μs. The inter-pulse interval had a significant effect on the perceived loudness, and this effect was consistent with both passive (membrane-related) and active (ion-channel-related) neuronal mechanisms contributing to facilitation. Furthermore, the effect of interval interacted with the polarity of the pulse pairs. At threshold, there was an effect of polarity, but, surprisingly, no effect of interval nor an interaction between the two factors. We discuss possible peripheral origins of these results

    Effect of Multiple Impacts on the Deformation of Wear-Resistant Steels

    No full text
    More durable materials enable reducing the downtime and maintenance costs by decreasing the number of replaced core components in various industrial applications. In this study, the behavior of three wear-resistant quenched martensitic steel grades and the S355 structural steel was examined in controlled impact conditions. The materials' impact behavior was investigated by several methods including residual stress measurements and electron backscatter diffraction. For all studied materials, the size and depth of the impact marks correlate via a logarithmic function to the number of impacts mostly due to work hardening. The underlying deformation behavior of the material depends on the mechanical properties and microstructure of the material. At high impact counts, softer martensitic steel was found to behave differently when compared to the other tested materials as it underwent severe changes in its microstructure and exhibited marked hardening
    corecore