58 research outputs found
"Smoking gun" signatures of topological milestones in trivial materials by measurement fine-tuning and data postselection
Exploring the topology of electronic bands is a way to realize new states of
matter with possible implications for information technology. Because bands
cannot always be observed directly, a central question is how to tell that a
topological regime has been achieved. Experiments are often guided by a
prediction of a unique signal or a pattern, called "the smoking gun". Examples
include peaks in conductivity, microwave resonances, and shifts in interference
fringes. However, many condensed matter experiments are performed on relatively
small, micron or nanometer-scale, specimens. These structures are in the
so-called mesoscopic regime, between atomic and macroscopic physics, where
phenomenology is particularly rich. In this paper, we demonstrate that the
trivial effects of quantum confinement, quantum interference and charge
dynamics in nanostructures can reproduce accepted smoking gun signatures of
triplet supercurrents, Majorana modes, topological Josephson junctions and
fractionalized particles. The examples we use correspond to milestones of
topological quantum computing: qubit spectroscopy, fusion and braiding. None of
the samples we use are in the topological regime. The smoking gun patterns are
achieved by fine-tuning during data acquisition and by subsequent data
selection to pick non-representative examples out of a fluid multitude of
similar patterns that do not generally fit the "smoking gun" designation.
Building on this insight, we discuss ways that experimentalists can rigorously
delineate between topological and non-topological effects, and the effects of
fine-tuning by deeper analysis of larger volumes of data.Comment: Data are available through Zenodo at DOI: 10.5281/zenodo.834930
Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme
Spin-polarised radio-frequency currents, whose frequency is equal to that of
the gyrotropic mode, will cause an excitation of the core of a magnetic vortex
confined in a magnetic tunnel junction. When the excitation radius of the
vortex core is greater than that of the junction radius, vortex core expulsion
is observed, leading to a large change in resistance, as the layer enters a
predominantly uniform magnetisation state. Unlike the conventional spin-torque
diode effect, this highly tunable resonant effect will generate a voltage which
does not decrease as a function of rf power, and has the potential to form the
basis of a new generation of tunable nanoscale radio-frequency detectors
Tunable energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration
A wide variety of coupled harmonic oscillators exist in nature1. Coupling
between different oscillators allows for the possibility of mutual energy
transfer between them2-4 and the information-signal propagation5,6. Low-energy
input signals and their transport with low-energy dissipation are the key
technical factors in the design of information processing devices7. Here,
utilizing the concept of coupled oscillators, we experimentally demonstrated a
robust new mechanism for energy transfer between spatially separated
dipolar-coupled magnetic disks - stimulated vortex gyration. Direct
experimental evidence was obtained by time-resolved soft X-ray microscopy. The
rate of energy transfer from one disk to the other was deduced from the two
normal modes' frequency splitting caused by dipolar interaction. This mechanism
provides the advantages of tunable energy transfer rate, low-power input
signal, and low-energy dissipation for magnetic elements with negligible
damping. Coupled vortex-state disks are promising candidates for
information-signal processing devices that operate above room temperature
Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator
The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities
Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses
Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to similar to 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.open4
Neuron-glial Interactions
Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006
Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems
Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization
Neuron-Glial Interactions
Although lagging behind classical computational neuroscience, theoretical and
computational approaches are beginning to emerge to characterize different
aspects of neuron-glial interactions. This chapter aims to provide essential
knowledge on neuron-glial interactions in the mammalian brain, leveraging on
computational studies that focus on structure (anatomy) and function
(physiology) of such interactions in the healthy brain. Although our
understanding of the need of neuron-glial interactions in the brain is still at
its infancy, being mostly based on predictions that await for experimental
validation, simple general modeling arguments borrowed from control theory are
introduced to support the importance of including such interactions in
traditional neuron-based modeling paradigms.Comment: 43 pages, 2 figures, 1 table. Accepted for publication in the
"Encyclopedia of Computational Neuroscience," D. Jaeger and R. Jung eds.,
Springer-Verlag New York, 2020 (2nd edition
- …