222 research outputs found
Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction
We report current-induced magnetization reversal in a ferromagnetic
semiconductor-based magnetic tunnel junction (Ga,Mn)As/AlAs/(Ga,Mn)As prepared
by molecular beam epitaxy on a p-GaAs(001) substrate. A change in
magneto-resistance that is asymmetric with respect to the current direction is
found with the excitation current of 10^6 A/cm^2. Contributions of both
unpolarized and spin-polarized components are examined, and we conclude that
the partial magnetization reversal occurs in the (Ga,Mn)As layer of smaller
magnetization with the spin-polarized tunneling current of 10^5 A/cm^2.Comment: 13 pages, 3 figure
Electronic structure of InMnAs studied by photoemission spectroscopy: Comparison with GaMnAs
We have investigated the electronic structure of the -type diluted
magnetic semiconductor InMnAs by photoemission spectroscopy. The Mn
3 partial density of states is found to be basically similar to that of
GaMnAs. However, the impurity-band like states near the top of
the valence band have not been observed by angle-resolved photoemission
spectroscopy unlike GaMnAs. This difference would explain the
difference in transport, magnetic and optical properties of
InMnAs and GaMnAs. The different electronic
structures are attributed to the weaker Mn 3 - As 4 hybridization in
InMnAs than in GaMnAs.Comment: 4 pages, 3 figure
Propagating Coherent Acoustic Phonon Wavepackets in InMnAs/GaSb
We observe pronounced oscillations in the differential reflectivity of a
ferromagnetic InMnAs/GaSb heterostructure using two-color pump-probe
spectroscopy. Although originally thought to be associated with the
ferromagnetism, our studies show that the oscillations instead result from
changes in the position and frequency-dependent dielectric function due to the
generation of coherent acoustic phonons in the ferromagnetic InMnAs layer and
their subsequent propagation into the GaSb. Our theory accurately predicts the
experimentally measured oscillation period and decay time as a function of
probe wavelength.Comment: 4 pages, 4 figure
- β¦