5,074 research outputs found
World-Wide Volkswagen Corporation v. Woodson: Minimum Contacts in a Modern World
World Wide Volkswagen Corporation v. Woodson considers the problem of modifying in personam jurisdiction to comply with the changing nature of the American economy. Several lower courts had adjusted the minimum contacts test of International Shoe Co. v. Washington to allow for the differences in modern economic lifestyle, but a uniformity amongst the various approaches was lacking. Rather than synthesize a contemporary test for the assertion of in personam jurisdiction, the World- Wide Court chose to place state sovereignty above modern commercial realities and adhere to a more rigid application of the minimum contacts analysis. The author takes issue with this lack of flexibility and questions the inequitable results that will likely occur from an approach that separates the consideration of fairness to the parties from the minimum contacts test. It is also shown that due to this separation, fairness remains only an academic discussion. Also, the author urges a reconsideration of the issue with a presentation of solutions and examples of other more modern approaches
Unusual magnetic properties of the low-dimensional quantum magnet Na2V3O7
We report the results of low-temperature measurements of the specific heat
Cp(T), ac susceptibility chi(T) and 23Na nuclear magnetic resonance NMR of
Na2V3O7. At liquid He temperatures Cp(T)/T exhibits broad field-dependent
maxima, which shift to higher temperatures upon increasing the applied magnetic
field H. Below 1.5 K the ac magnetic susceptibility chi(T) follows a
Curie-Weiss law and exhibits a cusp at 0.086 mK which indicates a phase
transition at very low temperatures. These results support the previous
conjecture that Na2V3O7 is close to a quantum critical point (QCP) at mu_{0}H =
0 T. The entire data set, including results of measurements of the NMR
spin-lattice relaxation 1/T1(T), reveals a complex magnetic behavior at low
temperatures. We argue that it is due to a distribution of singlet-triplet
energy gaps of dimerized V moments. The dimerization process evolves over a
rather broad temperature range around and below 100 K. At the lowest
temperatures the magnetic properties are dominated by the response of only a
minor fraction of the V moments.Comment: 10.5 pages, 15 figures. Submitted to Phys. Rev.
Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying
We study the problem of channel pairing and power allocation in a
multichannel multihop relay network to enhance the end-to-end data rate. Both
amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are
considered. Given fixed power allocation to the channels, we show that channel
pairing over multiple hops can be decomposed into independent pairing problems
at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal,
where each relay pairs its incoming and outgoing channels by their SNR order.
For the joint optimization of channel pairing and power allocation under both
total and individual power constraints, we show that the problem can be
decoupled into two subproblems solved separately. This separation principle is
established by observing the equivalence between sorting SNRs and sorting
channel gains in the jointly optimal solution. It significantly reduces the
computational complexity in finding the jointly optimal solution. It follows
that the channel pairing problem in joint optimization can be again decomposed
into independent pairing problems at each relay based on sorted channel gains.
The solution for optimizing power allocation for DF relaying is also provided,
as well as an asymptotically optimal solution for AF relaying. Numerical
results are provided to demonstrate substantial performance gain of the jointly
optimal solution over some suboptimal alternatives. It is also observed that
more gain is obtained from optimal channel pairing than optimal power
allocation through judiciously exploiting the variation among multiple
channels. Impact of the variation of channel gain, the number of channels, and
the number of hops on the performance gain is also studied through numerical
examples.Comment: 15 pages. IEEE Transactions on Signal Processin
Loop algorithm for Heisenberg models with biquadratic interaction and phase transitions in two dimensions
We present a new algorithm for quantum Monte Carlo simulation based on global
updating with loops. While various theoretical predictions are confirmed in one
dimension, we find, for S=1 systems on a square lattice with an
antiferromagnetic biquadratic interaction, that the intermediate phase between
the antiferromagnetic and the ferromagnetic phases is disordered and that the
two phase transitions are both of the first order in contrast to the
one-dimensional case. It is strongly suggested that the transition points
coincide those at which the algorithm changes qualitatively.Comment: 4 pages including 4 figures, to appear in JPS
A low-dimensional spin S = 1/2 system at the quantum critical limit: Na2V2O7
We report the results of measurements of the dc-susceptibility and the
23Na-NMR response of Na2V2O7, a recently synthesized, non metallic low
dimensional spin system. Our results indicate that upon reducing the
temperature to below 100 K, the V^{4+} moments are gradually quenched, leaving
only one moment out of 9 active. The NMR data reveal a phase transition at very
low temperatures. With decreasing applied field H, the critical temperature
shifts towards T = 0 K, suggesting that Na2V2O7 may be regarded as an insulator
reaching a quantum critical point at H = 0.Comment: 4 pages, 5 figure
High Magnetic Field NMR Studies of LiVGeO, a quasi 1-D Spin System
We report Li pulsed NMR measurements in polycrystalline and single
crystal samples of the quasi one-dimensional S=1 antiferromagnet
LiVGeO, whose AF transition temperature is K.
The field () and temperature () ranges covered were 9-44.5 T and
1.7-300 K respectively. The measurements included NMR spectra, the spin-lattice
relaxation rate (), and the spin-phase relaxation rate (),
often as a function of the orientation of the field relative to the crystal
axes. The spectra indicate an AF magnetic structure consistent with that
obtained from neutron diffraction measurements, but with the moments aligned
parallel to the c-axis. The spectra also provide the -dependence of the AF
order parameter and show that the transition is either second order or weakly
first order. Both the spectra and the data show that has at
most a small effect on the alignment of the AF moment. There is no spin-flop
transition up to 44.5 T. These features indicate a very large magnetic
anisotropy energy in LiVGeO with orbital degrees of freedom playing an
important role. Below 8 K, varies substantially with the orientation
of in the plane perpendicular to the c-axis, suggesting a small energy
gap for magnetic fluctuations that is very anisotropic.Comment: submitted to Phys. Rev.
- …