1,693 research outputs found
Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models
We introduce a method to obtain the specific heat of quantum impurity models
via a direct calculation of the impurity internal energy requiring only the
evaluation of local quantities within a single numerical renormalization group
(NRG) calculation for the total system. For the Anderson impurity model, we
show that the impurity internal energy can be expressed as a sum of purely
local static correlation functions and a term that involves also the impurity
Green function. The temperature dependence of the latter can be neglected in
many cases, thereby allowing the impurity specific heat, , to be
calculated accurately from local static correlation functions; specifically via
, where and are the
energies of the (embedded) impurity and the hybridization energy, respectively.
The term involving the Green function can also be evaluated in cases where its
temperature dependence is non-negligible, adding an extra term to . For the non-degenerate Anderson impurity model, we show by comparison
with exact Bethe ansatz calculations that the results recover accurately both
the Kondo induced peak in the specific heat at low temperatures as well as the
high temperature peak due to the resonant level. The approach applies to
multiorbital and multichannel Anderson impurity models with arbitrary local
Coulomb interactions. An application to the Ohmic two state system and the
anisotropic Kondo model is also given, with comparisons to Bethe ansatz
calculations. The new approach could also be of interest within other impurity
solvers, e.g., within quantum Monte Carlo techniques.Comment: 16 pages, 15 figures, published versio
Atmospheric neutrons
Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made
Living IoT: A Flying Wireless Platform on Live Insects
Sensor networks with devices capable of moving could enable applications
ranging from precision irrigation to environmental sensing. Using mechanical
drones to move sensors, however, severely limits operation time since flight
time is limited by the energy density of current battery technology. We explore
an alternative, biology-based solution: integrate sensing, computing and
communication functionalities onto live flying insects to create a mobile IoT
platform.
Such an approach takes advantage of these tiny, highly efficient biological
insects which are ubiquitous in many outdoor ecosystems, to essentially provide
mobility for free. Doing so however requires addressing key technical
challenges of power, size, weight and self-localization in order for the
insects to perform location-dependent sensing operations as they carry our IoT
payload through the environment. We develop and deploy our platform on
bumblebees which includes backscatter communication, low-power
self-localization hardware, sensors, and a power source. We show that our
platform is capable of sensing, backscattering data at 1 kbps when the insects
are back at the hive, and localizing itself up to distances of 80 m from the
access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang,
In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201
Depleted Energy Charge and Increased Pulmonary Endothelial Permeability Induced by Mitochondrial Complex I inhibition are Mitigated by Coenzyme Q\u3csub\u3e1\u3c/sub\u3e in the Isolated Perfused Rat Lung
Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66±0.46 (SEM) to 2.34±0.15 µmol·g−1 dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36±1.64 to 38.62±3.14 µmol·15 min−1 perfusion·g−1 dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043±0.010 to 0.156±0.037 ml·min−1·cm H2O−1·g−1 dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency
Effective algebraic degeneracy
We prove that any nonconstant entire holomorphic curve from the complex line
C into a projective algebraic hypersurface X = X^n in P^{n+1}(C) of arbitrary
dimension n (at least 2) must be algebraically degenerate provided X is generic
if its degree d = deg(X) satisfies the effective lower bound: d larger than or
equal to n^{{(n+1)}^{n+5}}
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy
Peer reviewe
How not to move the line drawn on pain
In this second commentary I outline the inadequacy of Key\u27s responses to the many peer critiques of his thesis that have so far appeared in Animal Sentience. I illustrate with examples drawn from his response to my first commentary
Insects join the consciousness fray
Klein & Barron\u27s review of recent insect neurobiology helps correct the impression that insect behavior is orchestrated without the benefit of central integrative mechanisms. Given their existence, the authors go on to ask whether these central mechanisms also feature the kind of integrative operations that support sentience, and propose that they do. Along the way they raise a number of conceptual and evidentiary issues of fundamental importance for the neuroscience of consciousness, allowing me to comment favorably on a number of them. I conclude by pointing to ways in which the conception of insect sentience they outline might be tested empirically
- …
