1,188 research outputs found
In-Plane and Out-of-Plane Charge Dynamics of High- Cuprates
We propose a theoretical expression for the - and -dependent
dielectric function of a stack of two-dimensional layers coupled along the
direction perpendicular to the layers, and discuss some of its properties. We
argue that the plasma frequencies at should correspond to those which are
experimentally obtained from optical measurements on {\em e.g.}
LaSrCuO via the -sum rule analysis, regardless of the fact
that such systems are strongly correlated. We discuss some of the ramifications
due to strong anisotropy of the charge transport in these systems, and the lack
of coherence for the transport in the direction perpendicular to the layers.Comment: 8 pages, postscript, uuencoded gz-compressed .tar fil
Dynamical Models of Elliptical Galaxies in z=0.5 Clusters: I. Data-Model Comparison and Evolution of Galaxy Rotation
We present spatially resolved stellar rotation velocity and velocity
dispersion profiles form Keck/LRIS absorption-line spectra for 25 galaxies,
mostly visually classified ellipticals, in three clusters at z=0.5. We
interpret the kinematical data and HST photometry using oblate axisymmetric
two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields
good fits, provided that the seeing and observational characteristics are
carefully modeled. The fits yield for each galaxy the dynamical M/L and a
measure of the galaxy rotation rate. Paper II addresses the implied M/L
evolution. Here we study the rotation-rate evolution by comparison to a sample
of local elliptical galaxies of similar present-day luminosity. The brightest
galaxies in the sample all rotate too slowly to account for their flattening,
as is also observed at z=0. But the average rotation rate is higher at z=0.5
than locally. This may be due to a higher fraction of misclassified S0 galaxies
(although this effect is insufficient to explain the observed strong evolution
of the cluster S0 fraction with redshift). Alternatively, dry mergers between
early-type galaxies may have decreased the average rotation rate over time. It
is unclear whether such mergers are numerous enough in clusters to explain the
observed trend quantitatively. Disk-disk mergers may affect the comparison
through the so-called progenitor bias, but this cannot explain the direction of
the observed rotation-rate evolution. Additional samples are needed to
constrain possible environmental dependencies and cosmic variance in galaxy
rotation rates. Either way, studies of the internal stellar dynamics of distant
galaxies provide a valuable new approach for exploring galaxy evolution.Comment: ApJ, submitted; 17 pages formatted with emulateap
Superconductivity-Induced Transfer of In-Plane Spectral Weight in Bi2Sr2CaCu2O8: Resolving a Controversy
We present a detailed analysis of the superconductivity-induced
redistribution of optical spectral weight in Bi2Sr2CaCu2O8 near optimal doping.
It confirms the previous conclusion by Molegraaf et al. (Science 66, 2239
(2002)), that the integrated low-frequency spectral weight shows an extra
increase below Tc. Since the region, where the change of the integrated
spectral weight is not compensated, extends well above 2.5 eV, this transfer is
caused by the transfer of spectral weight from interband to intraband region
and only partially by the narrowing of the intraband peak. We show that the
opposite assertion by Boris et al. (Science 304, 708 (2004)) regarding this
compound, is unlikely the consequence of any obvious discrepancies between the
actual experimental data.Comment: ReVTeX, 9 pages, 8 encapsulated postscript figures, several typo's
correcte
In-plane optical spectral weight transfer in optimally doped BiSrCaCuO
We examine the redistribution of the in-plane optical spectral weight in the
normal and superconducting state in tri-layer \bbb (Bi2223) near optimal doping
( = 110 K) on a single crystal via infrared reflectivity and spectroscopic
ellipsometry. We report the temperature dependence of the low-frequency
integrated spectral weight for different values of the cutoff
energy . Two different model-independent analyses consistently show
that for = 1 eV, which is below the charge transfer gap,
increases below , implying the lowering of the kinetic
energy of the holes. This is opposite to the BCS scenario, but it follows the
same trend observed in the bi-layer compound \bb (Bi2212). The size of this
effect is larger in Bi2223 than in Bi2212, approximately scaling with the
critical temperature. In the normal state, the temperature dependence of
is close to up to 300 K
Transverse optical Josephson plasmons, equations of motion
A detailed calculation is presented of the dielectric function in
superconducttors consisting of two Josephson coupled superconducting layers per
unit cell, taking into account the effect of finite compressibility of the
electron fluid. From the model it follows, that two longitudinal, and one
transverse optical Josephson plasma resonance exist in these materials, for
electric field polarization perpendicular to the planes. The latter mode
appears as a resonance in the transverse dielectric function, and it couples
directly to the electrical field vector of infrared radiation. A shift of all
plasma frequencies, and a reduction of the intensity of the transverse optical
Josephson plasmon is shown to result from the finite compressibility of the
electron fluid.Comment: 17 pages, ReVTeX, 7 figures in eps forma
The use of a SQUID magnetometer for middle ear research
A new technique is described for the measurement of vibrations in the temporal bones of an isolated middle ear. The precise recording of vibrations in the middle ear is of importance for the construction and improvement of a middle ear prosthesis.1 The method of measurement is based on a transformation of mechanical vibrations into magnetic flux variations. This is performed by attaching a small piece of permanent magnetic material to the eardrum or middle ear ossicles. The magnetic flux variations caused by vibrations of the eardrum or ossicles during application of sound can be measured by means of a SQUID magnetometer.\ud
\ud
Measurements showed that it is possible to measure vibratory displacement amplitudes of the eardrum down to about 10−10 m in a frequency range between 200 Hz and 10 kHz, although the acoustical and magnetometer conditions were not optimal. The method offers several advantages compared to already existing methods.2–5,
Internal Dynamics, Structure and Formation of Dwarf Elliptical Galaxies: II. Rotating Versus Non-Rotating Dwarfs
We present spatially-resolved internal kinematics and stellar chemical
abundances for a sample of dwarf elliptical (dE) galaxies in the Virgo Cluster
observed with Keck/ESI. We find that 4 out of 17 dEs have major axis rotation
velocities consistent with rotational flattening, while the remaining dEs have
no detectable major axis rotation. Despite this difference in internal
kinematics, rotating and non-rotating dEs are remarkably similar in terms of
their position in the Fundamental Plane, morphological structure, stellar
populations, and local environment. We present evidence for faint underlying
disks and/or weak substructure in a fraction of both rotating and non-rotating
dEs, but a comparable number of counter-examples exist for both types which
show no evidence of such structure. Absorption-line strengths were determined
based on the Lick/IDS system (Hbeta, Mgb, Fe5270, Fe5335) for the central
region of each galaxy. We find no difference in the line-strength indices, and
hence stellar populations, between rotating and non-rotating dE galaxies. The
best-fitting mean age and metallicity for our 17 dE sample are 5 Gyr and Fe/H =
-0.3 dex, respectively, with rms spreads of 3 Gyr and 0.1 dex. The majority of
dEs are consistent with solar alpha/Fe abundance ratios. By contrast, the
stellar populations of classical elliptical galaxies are, on average, older,
more metal rich, and alpha-enhanced relative to our dE sample. The local
environments of both dEs types appear to be diverse in terms of their proximity
to larger galaxies in real or velocity space within the Virgo Cluster. Thus,
rotating and non-rotating dEs are remarkably similar in terms of their
structure, stellar content, and local environments, presenting a significant
challenge to theoretical models of their formation. (abridged)Comment: 33 pages, 12 figures. To appear in the October 2003 Astronomical
Journal. See http://www.ucolick.org/~mgeha/geha_dE.ps.gz for version with
high resolution figure
- …