4,411 research outputs found

    Local effective dynamics of quantum systems: A generalized approach to work and heat

    Full text link
    By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Examples are discussed ranging from the classical limit to purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density operator do not commute.Comment: 5 pages, 1 figure, published versio

    A generalization of Farey sequences: Some exploration via the computer

    Get PDF
    AbstractA generalization of Farey sequences for higher dimensions is considered, and numerical results obtained via the computer for quadratic Farey sequences are presented

    On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process

    Full text link
    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most metrology schemes measure a single parameter of a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationally-complete set of probe states. It is very convenient if this set is group-covariant -- i.e., each element is generated by applying an element of the quantum system's natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon ("biphoton") states, and report experimental studies of different states' sensitivity to small, unknown collective SU(2) rotations ("SU(2) jitter"). Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a-priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.Comment: 10 pages, 5 figure

    On conjectures and problems of Ruzsa concerning difference graphs of S-units

    Full text link
    Given a finite nonempty set of primes S, we build a graph G\mathcal{G} with vertex set Q\mathbb{Q} by connecting x and y if the prime divisors of both the numerator and denominator of x-y are from S. In this paper we resolve two conjectures posed by Ruzsa concerning the possible sizes of induced nondegenerate cycles of G\mathcal{G}, and also a problem of Ruzsa concerning the existence of subgraphs of G\mathcal{G} which are not induced subgraphs.Comment: 15 page

    Optical Quantum Computation with Perpetually Coupled Spins

    Full text link
    The possibility of using strongly and continuously interacting spins for quantum computation has recently been discussed. Here we present a simple optical scheme that achieves this goal while avoiding the drawbacks of earlier proposals. We employ a third state, accessed by a classical laser field, to create an effective barrier to information transfer. The mechanism proves to be highly efficient both for continuous and pulsed laser modes; moreover it is very robust, tolerating high decay rates for the excited states. The approach is applicable to a broad range of systems, in particular dense structures such as solid state self-assembled (e.g., molecular) devices. Importantly, there are existing structures upon which `first step' experiments could be immediately performed.Comment: 5 pages including 3 figures. Updated to published versio

    Adaptive quantum state tomography improves accuracy quadratically

    Get PDF
    We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-case infidelity between the estimate and the true state from O(N−1/2)O(N^{-1/2}) to O(N−1)O(N^{-1}). It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.10.1% to 0.010.01%) for a modest number of samples (N=3×104N=3\times10^4).Comment: 8 pages, 7 figure

    Cavity-induced temperature control of a two-level system

    Full text link
    We consider a two-level atom interacting with a single mode of the electromagnetic field in a cavity within the Jaynes-Cummings model. Initially, the atom is thermal while the cavity is in a coherent state. The atom interacts with the cavity field for a fixed time. After removing the atom from the cavity and applying a laser pulse the atom will be in a thermal state again. Depending on the interaction time with the cavity field the final temperature can be varied over a large range. We discuss how this method can be used to cool the internal degrees of freedom of atoms and create heat baths suitable for studying thermodynamics at the nanoscale
    • …
    corecore