4,411 research outputs found
Local effective dynamics of quantum systems: A generalized approach to work and heat
By computing the local energy expectation values with respect to some local
measurement basis we show that for any quantum system there are two
fundamentally different contributions: changes in energy that do not alter the
local von Neumann entropy and changes that do. We identify the former as work
and the latter as heat. Since our derivation makes no assumptions on the system
Hamiltonian or its state, the result is valid even for states arbitrarily far
from equilibrium. Examples are discussed ranging from the classical limit to
purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density
operator do not commute.Comment: 5 pages, 1 figure, published versio
A generalization of Farey sequences: Some exploration via the computer
AbstractA generalization of Farey sequences for higher dimensions is considered, and numerical results obtained via the computer for quadratic Farey sequences are presented
On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process
Quantum metrology uses quantum states with no classical counterpart to
measure a physical quantity with extraordinary sensitivity or precision. Most
metrology schemes measure a single parameter of a dynamical process by probing
it with a specially designed quantum state. The success of such a scheme
usually relies on the process belonging to a particular one-parameter family.
If this assumption is violated, or if the goal is to measure more than one
parameter, a different quantum state may perform better. In the most extreme
case, we know nothing about the process and wish to learn everything. This
requires quantum process tomography, which demands an informationally-complete
set of probe states. It is very convenient if this set is group-covariant --
i.e., each element is generated by applying an element of the quantum system's
natural symmetry group to a single fixed fiducial state. In this paper, we
consider metrology with 2-photon ("biphoton") states, and report experimental
studies of different states' sensitivity to small, unknown collective SU(2)
rotations ("SU(2) jitter"). Maximally entangled N00N states are the most
sensitive detectors of such a rotation, yet they are also among the worst at
fully characterizing an a-priori unknown process. We identify (and confirm
experimentally) the best SU(2)-covariant set for process tomography; these
states are all less entangled than the N00N state, and are characterized by the
fact that they form a 2-design.Comment: 10 pages, 5 figure
On conjectures and problems of Ruzsa concerning difference graphs of S-units
Given a finite nonempty set of primes S, we build a graph with
vertex set by connecting x and y if the prime divisors of both the
numerator and denominator of x-y are from S. In this paper we resolve two
conjectures posed by Ruzsa concerning the possible sizes of induced
nondegenerate cycles of , and also a problem of Ruzsa concerning
the existence of subgraphs of which are not induced subgraphs.Comment: 15 page
Optical Quantum Computation with Perpetually Coupled Spins
The possibility of using strongly and continuously interacting spins for
quantum computation has recently been discussed. Here we present a simple
optical scheme that achieves this goal while avoiding the drawbacks of earlier
proposals. We employ a third state, accessed by a classical laser field, to
create an effective barrier to information transfer. The mechanism proves to be
highly efficient both for continuous and pulsed laser modes; moreover it is
very robust, tolerating high decay rates for the excited states. The approach
is applicable to a broad range of systems, in particular dense structures such
as solid state self-assembled (e.g., molecular) devices. Importantly, there are
existing structures upon which `first step' experiments could be immediately
performed.Comment: 5 pages including 3 figures. Updated to published versio
Adaptive quantum state tomography improves accuracy quadratically
We introduce a simple protocol for adaptive quantum state tomography, which
reduces the worst-case infidelity between the estimate and the true state from
to . It uses a single adaptation step and just one
extra measurement setting. In a linear optical qubit experiment, we demonstrate
a full order of magnitude reduction in infidelity (from to ) for
a modest number of samples ().Comment: 8 pages, 7 figure
Cavity-induced temperature control of a two-level system
We consider a two-level atom interacting with a single mode of the
electromagnetic field in a cavity within the Jaynes-Cummings model. Initially,
the atom is thermal while the cavity is in a coherent state. The atom interacts
with the cavity field for a fixed time. After removing the atom from the cavity
and applying a laser pulse the atom will be in a thermal state again. Depending
on the interaction time with the cavity field the final temperature can be
varied over a large range. We discuss how this method can be used to cool the
internal degrees of freedom of atoms and create heat baths suitable for
studying thermodynamics at the nanoscale
- …