14 research outputs found

    Bisphenol A in human saliva and urine before and after treatment with dental polymer‐based restorative materials

    Get PDF
    The aim of this study was to quantify bisphenol A (BPA) concentrations in saliva and urine before and after treatment with dental polymer-based restorative materials to assess if placement of this material is associated with increased BPA levels in saliva and urine. Twenty individuals in need of at least one dental restoration with polymer-based restorative material were included in this study. The participants were instructed to abstain from eating, drinking, and brushing their teeth for at least 10 h prior to sampling. Saliva and urine were collected before and 10 min (saliva only), 1 h, 24 h, and 1 wk after treatment. Samples were stored at 80°C before analyses. BPA in saliva and urine was determined with liquid chromatography/mass spectrometry. Linear mixed effects regression models were used for statistical analyses. There was a statistically significant increase of salivary BPA concentration directly after placement of the dental polymer-based restorations. Following placement, the concentration of BPA decreased exponentially with time. One week after treatment the BPA level in saliva was only marginally higher than before treatment. In urine, no statistically significant change of the BPA concentration was detected after treatment.publishedVersio

    Landscape Functions in Relation to Agricultural Management in Norway

    No full text

    Bisphenol A in human saliva and urine before and after treatment with dental polymer‐based restorative materials

    Get PDF
    The aim of this study was to quantify bisphenol A (BPA) concentrations in saliva and urine before and after treatment with dental polymer-based restorative materials to assess if placement of this material is associated with increased BPA levels in saliva and urine. Twenty individuals in need of at least one dental restoration with polymer-based restorative material were included in this study. The participants were instructed to abstain from eating, drinking, and brushing their teeth for at least 10 h prior to sampling. Saliva and urine were collected before and 10 min (saliva only), 1 h, 24 h, and 1 wk after treatment. Samples were stored at 80°C before analyses. BPA in saliva and urine was determined with liquid chromatography/mass spectrometry. Linear mixed effects regression models were used for statistical analyses. There was a statistically significant increase of salivary BPA concentration directly after placement of the dental polymer-based restorations. Following placement, the concentration of BPA decreased exponentially with time. One week after treatment the BPA level in saliva was only marginally higher than before treatment. In urine, no statistically significant change of the BPA concentration was detected after treatment

    Phosphorus losses from agricultural areas in river basins; effects and uncertainties of targeted mitigation measures

    No full text
    In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly important for the P concentration in most European rivers, lakes, and estuaries, even though the quantity of P lost from agricultural areas in European catchments varies at least one order of magnitude ( 2.1 kg P ha(-1)). We focus on the importance of P for the implementation of the EU Water Framework Directive and discuss the benefits, uncertainties, and side effects of the different targeted mitigation measures that can be adopted to combat P losses from agricultural areas in river basins. Experimental evidence of the effects of some of the main targeted mitigation measures hitherto implemented is demonstrated, including: (i) soil tillage changes, (ii) treatment of soils near ditches and streams with iron to reduce P transport from source areas to surface waters, (iii) establishment of buffer zones for retaining P from surface runoff, (iv) restoration of river-floodplain systems to allow natural inundation of riparian areas and deposition of P, and (v) inundation of riparian areas with tile drainage water for P retention. Furthermore, we show how river basin managers can map and analyze the extent and importance of P risk areas, exemplified by four catchments differing in size in Norway, Denmark, and the Netherlands. Finally, we discuss the factors and mechanisms that may delay and/or counteract the responses of mitigation measures for combating P losses from agricultural areas when monitored at the catchment scale
    corecore