204 research outputs found

    Loss of RNA–Dependent RNA Polymerase 2 (RDR2) Function Causes Widespread and Unexpected Changes in the Expression of Transposons, Genes, and 24-nt Small RNAs

    Get PDF
    Transposable elements (TEs) comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally silenced. RNA–dependent RNA polymerase 2 (RDR2) is a component of the RNA–directed DNA methylation (RdDM) silencing pathway. In maize, loss of mediator of paramutation1 (mop1) encoded RDR2 function results in reactivation of transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs (siRNAs) that recruit RNA silencing components. An RNA–seq experiment conducted on shoot apical meristems (SAMs) revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most differentially expressed DNA TEs (78%) were up-regulated in the mop1 mutant. In contrast, most differentially expressed retrotransposons (68%) were down-regulated. This striking difference suggests that distinct silencing mechanisms are applied to different silencing templates. In addition, >6,000 genes (24% of analyzed genes), including nearly 80% (286/361) of genes in chromatin modification pathways, were differentially expressed. Overall, two-thirds of differentially regulated genes were down-regulated in the mop1 mutant. This finding suggests that RDR2 plays a significant role in regulating the expression of not only transposons, but also of genes. A re-analysis of existing small RNA data identified both RDR2–sensitive and RDR2–resistant species of 24 nt siRNAs that we hypothesize may at least partially explain the complex changes in the expression of genes and transposons observed in the mop1 mutant

    The Tnt1 Retrotransposon Escapes Silencing in Tobacco, Its Natural Host

    Get PDF
    Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host

    High Potential of a Transposon mPing as a Marker System in japonica × japonica Cross in Rice

    Get PDF
    Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare × Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare × Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10

    Tm1: A Mutator/Foldback Transposable Element Family in Root-Knot Nematodes

    Get PDF
    Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species

    Mu Transposon Insertion Sites and Meiotic Recombination Events Co-Localize with Epigenetic Marks for Open Chromatin across the Maize Genome

    Get PDF
    The Mu transposon system of maize is highly active, with each of the ∼50–100 copies transposing on average once each generation. The approximately one dozen distinct Mu transposons contain highly similar ∼215 bp terminal inverted repeats (TIRs) and generate 9-bp target site duplications (TSDs) upon insertion. Using a novel genome walking strategy that uses these conserved TIRs as primer binding sites, Mu insertion sites were amplified from Mu stocks and sequenced via 454 technology. 94% of ∼965,000 reads carried Mu TIRs, demonstrating the specificity of this strategy. Among these TIRs, 21 novel Mu TIRs were discovered, revealing additional complexity of the Mu transposon system. The distribution of >40,000 non-redundant Mu insertion sites was strikingly non-uniform, such that rates increased in proportion to distance from the centromere. An identified putative Mu transposase binding consensus site does not explain this non-uniformity. An integrated genetic map containing more than 10,000 genetic markers was constructed and aligned to the sequence of the maize reference genome. Recombination rates (cM/Mb) are also strikingly non-uniform, with rates increasing in proportion to distance from the centromere. Mu insertion site frequencies are strongly correlated with recombination rates. Gene density does not fully explain the chromosomal distribution of Mu insertion and recombination sites, because pronounced preferences for the distal portion of chromosome are still observed even after accounting for gene density. The similarity of the distributions of Mu insertions and meiotic recombination sites suggests that common features, such as chromatin structure, are involved in site selection for both Mu insertion and meiotic recombination. The finding that Mu insertions and meiotic recombination sites both concentrate in genomic regions marked with epigenetic marks of open chromatin provides support for the hypothesis that open chromatin enhances rates of both Mu insertion and meiotic recombination

    Next-Generation Sequencing Reveals Recent Horizontal Transfer of a DNA Transposon between Divergent Mosquitoes

    Get PDF
    Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs). For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145–200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of different TEs and provide the evolutionary context of these lateral transfer events

    Positional information resolves structural variations and uncovers an evolutionarily divergent genetic locus in accessions of Arabidopsis thaliana.

    Get PDF
    Genome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality–drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a 3 ~71-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolution of SVs particularly in highly duplicated or repetitive regions. Sixty-one regions with misassembly signatures were identified from the Ler-0 draft, suggesting the presence of novel SVs that are not represented in the draft sequence. Sixty of those were resolved by iterative mapping using our data set. Fifteen large indels (>100 bp) identified from this study were found to be located either within protein-coding regions or upstream regulatory regions, suggesting the formation of novel alleles or altered regulation of existing genes in Ler-0. We propose future genome-sequencing experiments to follow a clone-based approach that incorporates positional information to ultimately reveal haplotype-specific differences between accessions
    corecore